BayesOpt
|
▼Cbayesopt::BayesOptBase | Abstract module for Bayesian optimization |
►Cbayesopt::ContinuousModel | Bayesian optimization for functions in continuous input spaces |
►Cbayesopt::DiscreteModel | Bayesian optimization for functions in discrete spaces |
Cbayesoptmodule.BayesOptCategorical | Python Module for BayesOptCategorical |
Cbayesoptmodule.BayesOptDiscrete | Python Module for BayesOptDiscrete |
Cbopt_params | Configuration parameters |
Cbayesopt::BOptState | Class that represents the state of an optimization |
Cbayesopt::utils::BoundingBox< V > | Defines a bounding box or axis-alligned bound constraints |
▼Cbayesopt::Criteria | Abstract interface for criteria functors |
Cbayesopt::AnnealedExpectedImprovement | Expected improvement criterion using Schonlau annealing. [Schonlau98] |
Cbayesopt::AnnealedLowerConfindenceBound | Lower (upper) confidence bound using Srinivas annealing [Srinivas10] |
Cbayesopt::BiasedExpectedImprovement | Expected improvement criterion modification by Lizotte |
►Cbayesopt::CombinedCriteria | Abstract class for combined criteria functions |
Cbayesopt::ExpectedImprovement | Expected improvement criterion by Mockus [Mockus78] |
Cbayesopt::ExpectedReturn | Expected return criterion |
Cbayesopt::GreedyAOptimality | Greedy A-Optimality criterion |
Cbayesopt::InputDistance | Distance in input space |
Cbayesopt::LowerConfidenceBound | Lower (upper) confidence bound criterion by [Cox and John, 1992] |
Cbayesopt::MutualInformation | Mutual Information bound criterion b [Contal et al., 2014] |
Cbayesopt::OptimisticSampling | Optimistic sampling |
Cbayesopt::ProbabilityOfImprovement | Probability of improvement criterion based on (Kushner) |
Cbayesopt::ThompsonSampling | Thompson sampling. Picks a random sample of the surrogate model |
Cbayesopt::CriteriaFactory | Factory model for criterion functions This factory is based on the libgp library by Manuel Blum https://bitbucket.org/mblum/libgp which follows the squeme of GPML by Rasmussen and Nickisch http://www.gaussianprocess.org/gpml/code/matlab/doc/ |
Cbayesopt::utils::CUnique | Simple class to generate sequences of unique numbers |
Cbayesopt::Dataset | Dataset model to deal with the vector (real) based datasets |
Cbayesopt::utils::FileParser | |
▼Cbayesopt::Kernel | Interface for kernel functors |
►Cbayesopt::AtomicKernel | Abstract class for an atomic kernel |
►Cbayesopt::CombinedKernel | Abstract class for combined kernel |
Ckernel_parameters | Kernel configuration parameters |
Cbayesopt::KernelFactory | Factory model for kernel functions This factory is based on the libgp library by Manuel Blum https://bitbucket.org/mblum/libgp which follows the squeme of GPML by Rasmussen and Nickisch http://www.gaussianprocess.org/gpml/code/matlab/doc/ |
Cbayesopt::KernelModel | |
Cbayesopt::KernelParameters | |
CLog< T > | |
▼CLog< Output2FILE > | |
CFILELog | |
▼CMatPlot | |
Cbayesopt::utils::DisplayProblem1D | |
Cbayesopt::utils::DisplayProblem2D | |
Cbayesopt::MCMCSampler | Markov Chain Monte Carlo sampler |
Cmean_parameters | |
Cbayesopt::MeanFactory | Factory model for parametric functions This factory is based on the libgp library by Manuel Blum https://bitbucket.org/mblum/libgp which follows the squeme of GPML by Rasmussen and Nickisch http://www.gaussianprocess.org/gpml/code/matlab/doc/ |
Cbayesopt::MeanModel | |
Cbayesopt::MeanParameters | |
Cbayesopt::NLOPT_Optimization | |
▼Cobject | |
►Cbayesoptmodule.BayesOptContinuous | Python Module for BayesOptContinuous |
COutput2FILE | |
Cbayesopt::Parameters | |
▼Cbayesopt::ParametricFunction | Interface for mean functors |
►Cbayesopt::AtomicFunction | Abstract class for an atomic kernel |
►Cbayesopt::CombinedFunction | Abstract class for combined functions |
Cbayesopt::utils::ParamLoader | |
▼Cbayesopt::PosteriorModel | Bayesian optimization using different non-parametric processes as distributions over surrogate functions |
Cbayesopt::EmpiricalBayes | Bayesian optimization using different non-parametric processes as distributions over surrogate functions |
Cbayesopt::MCMCModel | Posterior model of nonparametric processes/criteria based on MCMC samples |
Cbayesopt::PosteriorFixed | Bayesian optimization using different non-parametric processes as distributions over surrogate functions |
▼Cbayesopt::ProbabilityDistribution | |
Cbayesopt::GaussianDistribution | |
Cbayesopt::StudentTDistribution | |
▼Cbayesopt::RBOptimizable | |
Cbayesopt::CritCallback | |
►Cbayesopt::NonParametricProcess | Abstract class to implement Bayesian regressors |
Cbayesopt::RBOptimizableWrapper | |
Cbayesopt::RGBOptimizable | |
Cbayesopt::RGBOptimizableWrapper | |
CTemplateWritter | |
Cuser_function_data | |
▼CProcess | |
Cdemo_multiprocess.BayesOptProcess |