BayesOpt
Class Hierarchy

Go to the graphical class hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 123456]
 Cbayesopt::BayesOptBaseAbstract module for Bayesian optimization
 Cbayesopt::ContinuousModelBayesian optimization for functions in continuous input spaces
 Cbayesopt::DiscreteModelBayesian optimization for functions in discrete spaces
 Cbayesoptmodule.BayesOptCategoricalPython Module for BayesOptCategorical
 Cbayesoptmodule.BayesOptDiscretePython Module for BayesOptDiscrete
 Cbopt_paramsConfiguration parameters
 Cbayesopt::BOptStateClass that represents the state of an optimization
 Cbayesopt::utils::BoundingBox< V >Defines a bounding box or axis-alligned bound constraints
 Cbayesopt::CriteriaAbstract interface for criteria functors
 Cbayesopt::AnnealedExpectedImprovementExpected improvement criterion using Schonlau annealing. [Schonlau98]
 Cbayesopt::AnnealedLowerConfindenceBoundLower (upper) confidence bound using Srinivas annealing [Srinivas10]
 Cbayesopt::BiasedExpectedImprovementExpected improvement criterion modification by Lizotte
 Cbayesopt::CombinedCriteriaAbstract class for combined criteria functions
 Cbayesopt::ExpectedImprovementExpected improvement criterion by Mockus [Mockus78]
 Cbayesopt::ExpectedReturnExpected return criterion
 Cbayesopt::GreedyAOptimalityGreedy A-Optimality criterion
 Cbayesopt::InputDistanceDistance in input space
 Cbayesopt::LowerConfidenceBoundLower (upper) confidence bound criterion by [Cox and John, 1992]
 Cbayesopt::MutualInformationMutual Information bound criterion b [Contal et al., 2014]
 Cbayesopt::OptimisticSamplingOptimistic sampling
 Cbayesopt::ProbabilityOfImprovementProbability of improvement criterion based on (Kushner)
 Cbayesopt::ThompsonSamplingThompson sampling. Picks a random sample of the surrogate model
 Cbayesopt::CriteriaFactoryFactory model for criterion functions This factory is based on the libgp library by Manuel Blum https://bitbucket.org/mblum/libgp which follows the squeme of GPML by Rasmussen and Nickisch http://www.gaussianprocess.org/gpml/code/matlab/doc/
 Cbayesopt::utils::CUniqueSimple class to generate sequences of unique numbers
 Cbayesopt::DatasetDataset model to deal with the vector (real) based datasets
 Cbayesopt::utils::FileParser
 Cbayesopt::KernelInterface for kernel functors
 Cbayesopt::AtomicKernelAbstract class for an atomic kernel
 Cbayesopt::CombinedKernelAbstract class for combined kernel
 Ckernel_parametersKernel configuration parameters
 Cbayesopt::KernelFactoryFactory model for kernel functions This factory is based on the libgp library by Manuel Blum https://bitbucket.org/mblum/libgp which follows the squeme of GPML by Rasmussen and Nickisch http://www.gaussianprocess.org/gpml/code/matlab/doc/
 Cbayesopt::KernelModel
 Cbayesopt::KernelParameters
 CLog< T >
 CLog< Output2FILE >
 CFILELog
 CMatPlot
 Cbayesopt::utils::DisplayProblem1D
 Cbayesopt::utils::DisplayProblem2D
 Cbayesopt::MCMCSamplerMarkov Chain Monte Carlo sampler
 Cmean_parameters
 Cbayesopt::MeanFactoryFactory model for parametric functions This factory is based on the libgp library by Manuel Blum https://bitbucket.org/mblum/libgp which follows the squeme of GPML by Rasmussen and Nickisch http://www.gaussianprocess.org/gpml/code/matlab/doc/
 Cbayesopt::MeanModel
 Cbayesopt::MeanParameters
 Cbayesopt::NLOPT_Optimization
 Cobject
 Cbayesoptmodule.BayesOptContinuousPython Module for BayesOptContinuous
 COutput2FILE
 Cbayesopt::Parameters
 Cbayesopt::ParametricFunctionInterface for mean functors
 Cbayesopt::AtomicFunctionAbstract class for an atomic kernel
 Cbayesopt::CombinedFunctionAbstract class for combined functions
 Cbayesopt::utils::ParamLoader
 Cbayesopt::PosteriorModelBayesian optimization using different non-parametric processes as distributions over surrogate functions
 Cbayesopt::EmpiricalBayesBayesian optimization using different non-parametric processes as distributions over surrogate functions
 Cbayesopt::MCMCModelPosterior model of nonparametric processes/criteria based on MCMC samples
 Cbayesopt::PosteriorFixedBayesian optimization using different non-parametric processes as distributions over surrogate functions
 Cbayesopt::ProbabilityDistribution
 Cbayesopt::GaussianDistribution
 Cbayesopt::StudentTDistribution
 Cbayesopt::RBOptimizable
 Cbayesopt::CritCallback
 Cbayesopt::NonParametricProcessAbstract class to implement Bayesian regressors
 Cbayesopt::RBOptimizableWrapper
 Cbayesopt::RGBOptimizable
 Cbayesopt::RGBOptimizableWrapper
 CTemplateWritter
 Cuser_function_data
 CProcess
 Cdemo_multiprocess.BayesOptProcess