BayesOpt
bayesopt::StudentTDistribution Class Reference
+ Inheritance diagram for bayesopt::StudentTDistribution:
+ Collaboration diagram for bayesopt::StudentTDistribution:

Public Member Functions

 StudentTDistribution (randEngine &eng)
 
void setMeanAndStd (double mean, double std)
 Sets the mean and std of the distribution.
 
void setDof (size_t dof)
 Sets the degrees of freedom (dof) the distribution.
 
double pdf (double x)
 Probability density function. More...
 
double negativeExpectedImprovement (double min, size_t g)
 Expected Improvement algorithm for minimization. More...
 
double lowerConfidenceBound (double beta)
 Lower confindence bound. More...
 
double negativeProbabilityOfImprovement (double min, double epsilon)
 Probability of improvement algorithm for minimization. More...
 
double sample_query ()
 Sample outcome acording to the marginal distribution at the query point. More...
 
double getMean ()
 
double getStd ()
 
- Public Member Functions inherited from bayesopt::ProbabilityDistribution
 ProbabilityDistribution (randEngine &eng)
 

Private Attributes

boost::math::students_t d_
 
double mean_
 
double std_
 
size_t dof_
 

Additional Inherited Members

- Protected Attributes inherited from bayesopt::ProbabilityDistribution
randEngine & mtRandom
 

Detailed Description

Definition at line 36 of file student_t_distribution.hpp.

Member Function Documentation

◆ lowerConfidenceBound()

double bayesopt::StudentTDistribution::lowerConfidenceBound ( double  beta)
virtual

Lower confindence bound.

Can be seen as the inverse of the Upper confidence bound

Parameters
betastd coefficient (used for annealing)
Returns
value of the lower confidence bound

Implements bayesopt::ProbabilityDistribution.

Definition at line 28 of file student_t_distribution.cpp.

Referenced by pdf().

◆ negativeExpectedImprovement()

double bayesopt::StudentTDistribution::negativeExpectedImprovement ( double  min,
size_t  g 
)
virtual

Expected Improvement algorithm for minimization.

Parameters
minminimum value found
gexponent (used for annealing)
Returns
negative value of the expected improvement

Implements bayesopt::ProbabilityDistribution.

Definition at line 16 of file student_t_distribution.cpp.

Referenced by pdf().

◆ negativeProbabilityOfImprovement()

double bayesopt::StudentTDistribution::negativeProbabilityOfImprovement ( double  min,
double  epsilon 
)
virtual

Probability of improvement algorithm for minimization.

Parameters
minminimum value found
epsilonminimum improvement margin
Returns
negative value of the probability of improvement

Implements bayesopt::ProbabilityDistribution.

Definition at line 33 of file student_t_distribution.cpp.

Referenced by pdf().

◆ pdf()

double bayesopt::StudentTDistribution::pdf ( double  x)
inlinevirtual

Probability density function.

Parameters
xquery point
Returns
probability

Implements bayesopt::ProbabilityDistribution.

Definition at line 63 of file student_t_distribution.hpp.

References lowerConfidenceBound(), negativeExpectedImprovement(), negativeProbabilityOfImprovement(), and sample_query().

◆ sample_query()

double bayesopt::StudentTDistribution::sample_query ( )
virtual

Sample outcome acording to the marginal distribution at the query point.

Returns
outcome

Implements bayesopt::ProbabilityDistribution.

Definition at line 40 of file student_t_distribution.cpp.

Referenced by pdf().


The documentation for this class was generated from the following files: