BayesOpt
|
Empirical Bayesian NonParametric process. More...
#include <conditionalbayesprocess.hpp>
Public Member Functions | |
ConditionalBayesProcess (size_t dim, Parameters parameters, const Dataset &data, MeanModel &mean, randEngine &eng) | |
virtual ProbabilityDistribution * | prediction (const vectord &query)=0 |
Function that returns the prediction of the GP for a query point in the hypercube [0,1]. More... | |
double | evaluate (const vectord &x) |
Computes the score (eg:likelihood) of the kernel parameters. More... | |
double | evaluateKernelParams () |
Computes the score (eg:likelihood) of the current kernel parameters. More... | |
Public Member Functions inherited from bayesopt::KernelRegressor | |
KernelRegressor (size_t dim, Parameters parameters, const Dataset &data, MeanModel &mean, randEngine &eng) | |
void | fitSurrogateModel () |
Computes the initial surrogate model and updates the kernel parameters estimation. More... | |
void | updateSurrogateModel () |
Sequential update of the surrogate model by adding a new row to the Kernel matrix, more precisely, to its Cholesky decomposition. More... | |
double | getSignalVariance () |
size_t | nHyperParameters () |
vectord | getHyperParameters () |
void | setHyperParameters (const vectord &theta) |
Public Member Functions inherited from bayesopt::NonParametricProcess | |
NonParametricProcess (size_t dim, Parameters parameters, const Dataset &data, MeanModel &mean, randEngine &eng) | |
double | getValueAtMinimum () |
const Dataset * | getData () |
double | getSignalVariance () |
Protected Member Functions | |
virtual double | negativeTotalLogLikelihood ()=0 |
Computes the negative log likelihood of the data for all the parameters. More... | |
virtual double | negativeLogLikelihood ()=0 |
Computes the negative log likelihood of the data for the kernel hyperparameters. More... | |
Protected Member Functions inherited from bayesopt::KernelRegressor | |
virtual void | precomputePrediction ()=0 |
Sets the kind of learning methodology for kernel hyperparameters. More... | |
void | computeCorrMatrix (matrixd &corrMatrix) |
Computes the Correlation (Kernel or Gram) matrix. | |
matrixd | computeCorrMatrix () |
Computes the Correlation (Kernel or Gram) matrix. | |
matrixd | computeDerivativeCorrMatrix (int dth_index) |
Computes the derivative of the correlation matrix with respect to the dth hyperparameter. | |
vectord | computeCrossCorrelation (const vectord &query) |
double | computeSelfCorrelation (const vectord &query) |
void | computeCholeskyCorrelation () |
Computes the Cholesky decomposition of the Correlation matrix. | |
Private Member Functions | |
double | negativeCrossValidation () |
Computes the negative score of the data using cross validation. More... | |
Additional Inherited Members | |
Static Public Member Functions inherited from bayesopt::NonParametricProcess | |
static NonParametricProcess * | create (size_t dim, Parameters parameters, const Dataset &data, MeanModel &mean, randEngine &eng) |
Factory model generator for surrogate models. More... | |
Protected Attributes inherited from bayesopt::KernelRegressor | |
matrixd | mL |
Cholesky decomposition of the Correlation matrix. | |
score_type | mScoreType |
learning_type | mLearnType |
bool | mLearnAll |
KernelModel | mKernel |
Protected Attributes inherited from bayesopt::NonParametricProcess | |
const Dataset & | mData |
double | mSigma |
Signal variance. | |
size_t | dim_ |
MeanModel & | mMean |
Empirical Bayesian NonParametric process.
Definition at line 42 of file conditionalbayesprocess.hpp.
double bayesopt::ConditionalBayesProcess::evaluateKernelParams | ( | ) |
Computes the score (eg:likelihood) of the current kernel parameters.
query | set of parameters. |
Definition at line 42 of file conditionalbayesprocess.cpp.
Referenced by evaluate().
|
private |
Computes the negative score of the data using cross validation.
Definition at line 62 of file conditionalbayesprocess.cpp.
References bayesopt::Dataset::mX.
|
protectedpure virtual |
Computes the negative log likelihood of the data for the kernel hyperparameters.
Implemented in bayesopt::GaussianProcess, bayesopt::GaussianProcessML, bayesopt::StudentTProcessJeffreys, bayesopt::StudentTProcessNIG, and bayesopt::GaussianProcessNormal.
|
protectedpure virtual |
Computes the negative log likelihood of the data for all the parameters.
Implemented in bayesopt::GaussianProcess, and bayesopt::HierarchicalGaussianProcess.
|
pure virtual |
Function that returns the prediction of the GP for a query point in the hypercube [0,1].
query | in the hypercube [0,1] to evaluate the Gaussian process |
Implements bayesopt::NonParametricProcess.
Implemented in bayesopt::StudentTProcessNIG, bayesopt::GaussianProcessML, bayesopt::GaussianProcessNormal, bayesopt::StudentTProcessJeffreys, and bayesopt::GaussianProcess.