BayesOpt
bayesopt::ConditionalBayesProcess Class Referenceabstract

Empirical Bayesian NonParametric process. More...

#include <conditionalbayesprocess.hpp>

+ Inheritance diagram for bayesopt::ConditionalBayesProcess:
+ Collaboration diagram for bayesopt::ConditionalBayesProcess:

Public Member Functions

 ConditionalBayesProcess (size_t dim, Parameters parameters, const Dataset &data, MeanModel &mean, randEngine &eng)
 
virtual ProbabilityDistributionprediction (const vectord &query)=0
 Function that returns the prediction of the GP for a query point in the hypercube [0,1]. More...
 
double evaluate (const vectord &x)
 Computes the score (eg:likelihood) of the kernel parameters. More...
 
double evaluateKernelParams ()
 Computes the score (eg:likelihood) of the current kernel parameters. More...
 
- Public Member Functions inherited from bayesopt::KernelRegressor
 KernelRegressor (size_t dim, Parameters parameters, const Dataset &data, MeanModel &mean, randEngine &eng)
 
void fitSurrogateModel ()
 Computes the initial surrogate model and updates the kernel parameters estimation. More...
 
void updateSurrogateModel ()
 Sequential update of the surrogate model by adding a new row to the Kernel matrix, more precisely, to its Cholesky decomposition. More...
 
double getSignalVariance ()
 
size_t nHyperParameters ()
 
vectord getHyperParameters ()
 
void setHyperParameters (const vectord &theta)
 
- Public Member Functions inherited from bayesopt::NonParametricProcess
 NonParametricProcess (size_t dim, Parameters parameters, const Dataset &data, MeanModel &mean, randEngine &eng)
 
double getValueAtMinimum ()
 
const DatasetgetData ()
 
double getSignalVariance ()
 

Protected Member Functions

virtual double negativeTotalLogLikelihood ()=0
 Computes the negative log likelihood of the data for all the parameters. More...
 
virtual double negativeLogLikelihood ()=0
 Computes the negative log likelihood of the data for the kernel hyperparameters. More...
 
- Protected Member Functions inherited from bayesopt::KernelRegressor
virtual void precomputePrediction ()=0
 Sets the kind of learning methodology for kernel hyperparameters. More...
 
void computeCorrMatrix (matrixd &corrMatrix)
 Computes the Correlation (Kernel or Gram) matrix.
 
matrixd computeCorrMatrix ()
 Computes the Correlation (Kernel or Gram) matrix.
 
matrixd computeDerivativeCorrMatrix (int dth_index)
 Computes the derivative of the correlation matrix with respect to the dth hyperparameter.
 
vectord computeCrossCorrelation (const vectord &query)
 
double computeSelfCorrelation (const vectord &query)
 
void computeCholeskyCorrelation ()
 Computes the Cholesky decomposition of the Correlation matrix.
 

Private Member Functions

double negativeCrossValidation ()
 Computes the negative score of the data using cross validation. More...
 

Additional Inherited Members

- Static Public Member Functions inherited from bayesopt::NonParametricProcess
static NonParametricProcesscreate (size_t dim, Parameters parameters, const Dataset &data, MeanModel &mean, randEngine &eng)
 Factory model generator for surrogate models. More...
 
- Protected Attributes inherited from bayesopt::KernelRegressor
matrixd mL
 Cholesky decomposition of the Correlation matrix.
 
score_type mScoreType
 
learning_type mLearnType
 
bool mLearnAll
 
KernelModel mKernel
 
- Protected Attributes inherited from bayesopt::NonParametricProcess
const DatasetmData
 
double mSigma
 Signal variance.
 
size_t dim_
 
MeanModelmMean
 

Detailed Description

Empirical Bayesian NonParametric process.

Definition at line 42 of file conditionalbayesprocess.hpp.

Member Function Documentation

◆ evaluateKernelParams()

double bayesopt::ConditionalBayesProcess::evaluateKernelParams ( )

Computes the score (eg:likelihood) of the current kernel parameters.

Parameters
queryset of parameters.
Returns
score

Definition at line 42 of file conditionalbayesprocess.cpp.

Referenced by evaluate().

◆ negativeCrossValidation()

double bayesopt::ConditionalBayesProcess::negativeCrossValidation ( )
private

Computes the negative score of the data using cross validation.

Returns
negative score

Definition at line 62 of file conditionalbayesprocess.cpp.

References bayesopt::Dataset::mX.

◆ negativeLogLikelihood()

virtual double bayesopt::ConditionalBayesProcess::negativeLogLikelihood ( )
protectedpure virtual

Computes the negative log likelihood of the data for the kernel hyperparameters.

Returns
value negative log likelihood

Implemented in bayesopt::GaussianProcess, bayesopt::GaussianProcessML, bayesopt::StudentTProcessJeffreys, bayesopt::StudentTProcessNIG, and bayesopt::GaussianProcessNormal.

◆ negativeTotalLogLikelihood()

virtual double bayesopt::ConditionalBayesProcess::negativeTotalLogLikelihood ( )
protectedpure virtual

Computes the negative log likelihood of the data for all the parameters.

Returns
value negative log likelihood

Implemented in bayesopt::GaussianProcess, and bayesopt::HierarchicalGaussianProcess.

◆ prediction()

virtual ProbabilityDistribution* bayesopt::ConditionalBayesProcess::prediction ( const vectord &  query)
pure virtual

Function that returns the prediction of the GP for a query point in the hypercube [0,1].

Parameters
queryin the hypercube [0,1] to evaluate the Gaussian process
Returns
pointer to the probability distribution.

Implements bayesopt::NonParametricProcess.

Implemented in bayesopt::StudentTProcessNIG, bayesopt::GaussianProcessML, bayesopt::GaussianProcessNormal, bayesopt::StudentTProcessJeffreys, and bayesopt::GaussianProcess.


The documentation for this class was generated from the following files: