BayesOpt
bopt_params Struct Reference

Configuration parameters. More...

#include <parameters.h>

+ Collaboration diagram for bopt_params:

Public Attributes

size_t n_iterations
 Maximum BayesOpt evaluations (budget)
 
size_t n_inner_iterations
 Maximum inner optimizer evaluations.
 
size_t n_init_samples
 Number of samples before optimization.
 
size_t n_iter_relearn
 Number of samples before relearn kernel.
 
size_t init_method
 Sampling method for initial set 1-LHS, 2-Sobol (if available), other value-uniformly distributed.
 
int random_seed
 >=0 -> Fixed seed, <0 -> Time based (variable). More...
 
int verbose_level
 Neg-Error,0-Warning,1-Info,2-Debug -> stdout 3-Error,4-Warning,5-Info,>5-Debug -> logfile.
 
char * log_filename
 Log file path (if applicable)
 
size_t load_save_flag
 1-Load data,2-Save data, 3-Load and save data. More...
 
char * load_filename
 Init data file path (if applicable)
 
char * save_filename
 Sava data file path (if applicable)
 
char * surr_name
 Name of the surrogate function.
 
double sigma_s
 Signal variance (if known). More...
 
double noise
 Variance of observation noise (and nugget)
 
double alpha
 Inverse Gamma prior for signal var. More...
 
double beta
 Inverse Gamma prior for signal var. More...
 
score_type sc_type
 Score type for kernel hyperparameters (ML,MAP,etc)
 
learning_type l_type
 Type of learning for the kernel params.
 
int l_all
 Learn all hyperparameters or only kernel.
 
double epsilon
 For epsilon-greedy exploration.
 
size_t force_jump
 If >0, and the difference between two consecutive observations is pure noise, for n consecutive steps, force a random jump. More...
 
kernel_parameters kernel
 Kernel parameters.
 
mean_parameters mean
 Mean (parametric function) parameters.
 
char * crit_name
 Name of the criterion.
 
double crit_params [128]
 Criterion hyperparameters (if needed)
 
size_t n_crit_params
 Number of criterion hyperparameters.
 

Detailed Description

Configuration parameters.

See also
Reference Manual for a full description of the parameters

Definition at line 83 of file parameters.h.

Member Data Documentation

◆ alpha

double bopt_params::alpha

Inverse Gamma prior for signal var.

Used in StudentTProcessNIG

Definition at line 108 of file parameters.h.

◆ beta

double bopt_params::beta

Inverse Gamma prior for signal var.

Used in StudentTProcessNIG

Definition at line 110 of file parameters.h.

◆ force_jump

size_t bopt_params::force_jump

If >0, and the difference between two consecutive observations is pure noise, for n consecutive steps, force a random jump.

Avoid getting stuck if model is bad and there is few data, however, it might reduce the accuracy.

Definition at line 118 of file parameters.h.

◆ load_save_flag

size_t bopt_params::load_save_flag

1-Load data,2-Save data, 3-Load and save data.

Definition at line 98 of file parameters.h.

◆ random_seed

int bopt_params::random_seed

>=0 -> Fixed seed, <0 -> Time based (variable).

Definition at line 92 of file parameters.h.

◆ sigma_s

double bopt_params::sigma_s

Signal variance (if known).

Used in GaussianProcess and GaussianProcessNormal

Definition at line 104 of file parameters.h.


The documentation for this struct was generated from the following file: