BayesOpt
bayesopt::NonParametricProcess Class Referenceabstract

Abstract class to implement Bayesian regressors. More...

#include <nonparametricprocess.hpp>

+ Inheritance diagram for bayesopt::NonParametricProcess:
+ Collaboration diagram for bayesopt::NonParametricProcess:

Public Member Functions

 NonParametricProcess (size_t dim, Parameters parameters, const Dataset &data, MeanModel &mean, randEngine &eng)
 
virtual ProbabilityDistributionprediction (const vectord &query)=0
 Function that returns the prediction of the GP for a query point in the hypercube [0,1]. More...
 
virtual void fitSurrogateModel ()=0
 Computes the initial surrogate model and updates the kernel parameters estimation. More...
 
virtual void updateSurrogateModel ()=0
 Sequential update of the surrogate model by adding a new row to the Kernel matrix, more precisely, to its Cholesky decomposition. More...
 
double getValueAtMinimum ()
 
const DatasetgetData ()
 
double getSignalVariance ()
 
virtual size_t nHyperParameters ()=0
 
virtual vectord getHyperParameters ()=0
 
virtual void setHyperParameters (const vectord &theta)=0
 
- Public Member Functions inherited from bayesopt::RBOptimizable
virtual double evaluate (const vectord &query)=0
 

Static Public Member Functions

static NonParametricProcesscreate (size_t dim, Parameters parameters, const Dataset &data, MeanModel &mean, randEngine &eng)
 Factory model generator for surrogate models. More...
 

Protected Attributes

const DatasetmData
 
double mSigma
 Signal variance.
 
size_t dim_
 
MeanModelmMean
 

Detailed Description

Abstract class to implement Bayesian regressors.

Definition at line 43 of file nonparametricprocess.hpp.

Member Function Documentation

◆ create()

NonParametricProcess * bayesopt::NonParametricProcess::create ( size_t  dim,
Parameters  parameters,
const Dataset data,
MeanModel mean,
randEngine &  eng 
)
static

Factory model generator for surrogate models.

Parameters
parameters(process name, noise, priors, etc.)
Returns
pointer to the corresponding derivate class (surrogate model)

Definition at line 49 of file nonparametricprocess.cpp.

References bayesopt::Parameters::surr_name.

Referenced by bayesopt::PosteriorFixed::~PosteriorFixed().

◆ fitSurrogateModel()

virtual void bayesopt::NonParametricProcess::fitSurrogateModel ( )
pure virtual

Computes the initial surrogate model and updates the kernel parameters estimation.

This function requires to recompute all covariance matrixes, inverses, etc. Use it with precaution.

Implemented in bayesopt::KernelRegressor.

◆ prediction()

virtual ProbabilityDistribution* bayesopt::NonParametricProcess::prediction ( const vectord &  query)
pure virtual

Function that returns the prediction of the GP for a query point in the hypercube [0,1].

Parameters
queryin the hypercube [0,1] to evaluate the Gaussian process
Returns
pointer to the probability distribution.

Implemented in bayesopt::StudentTProcessNIG, bayesopt::ConditionalBayesProcess, bayesopt::GaussianProcessML, bayesopt::GaussianProcessNormal, bayesopt::StudentTProcessJeffreys, and bayesopt::GaussianProcess.

◆ updateSurrogateModel()

virtual void bayesopt::NonParametricProcess::updateSurrogateModel ( )
pure virtual

Sequential update of the surrogate model by adding a new row to the Kernel matrix, more precisely, to its Cholesky decomposition.

It assumes that the kernel hyperparemeters do not change.

Implemented in bayesopt::KernelRegressor.


The documentation for this class was generated from the following files: