|
BayesOpt
|
Abstract class to implement Bayesian regressors. More...
#include <nonparametricprocess.hpp>
Inheritance diagram for bayesopt::NonParametricProcess:
Collaboration diagram for bayesopt::NonParametricProcess:Public Member Functions | |
| NonParametricProcess (size_t dim, Parameters parameters, const Dataset &data, MeanModel &mean, randEngine &eng) | |
| virtual ProbabilityDistribution * | prediction (const vectord &query)=0 |
| Function that returns the prediction of the GP for a query point in the hypercube [0,1]. More... | |
| virtual void | fitSurrogateModel ()=0 |
| Computes the initial surrogate model and updates the kernel parameters estimation. More... | |
| virtual void | updateSurrogateModel ()=0 |
| Sequential update of the surrogate model by adding a new row to the Kernel matrix, more precisely, to its Cholesky decomposition. More... | |
| double | getValueAtMinimum () |
| const Dataset * | getData () |
| double | getSignalVariance () |
| virtual size_t | nHyperParameters ()=0 |
| virtual vectord | getHyperParameters ()=0 |
| virtual void | setHyperParameters (const vectord &theta)=0 |
Public Member Functions inherited from bayesopt::RBOptimizable | |
| virtual double | evaluate (const vectord &query)=0 |
Static Public Member Functions | |
| static NonParametricProcess * | create (size_t dim, Parameters parameters, const Dataset &data, MeanModel &mean, randEngine &eng) |
| Factory model generator for surrogate models. More... | |
Protected Attributes | |
| const Dataset & | mData |
| double | mSigma |
| Signal variance. | |
| size_t | dim_ |
| MeanModel & | mMean |
Abstract class to implement Bayesian regressors.
Definition at line 43 of file nonparametricprocess.hpp.
|
static |
Factory model generator for surrogate models.
| parameters | (process name, noise, priors, etc.) |
Definition at line 49 of file nonparametricprocess.cpp.
References bayesopt::Parameters::surr_name.
Referenced by bayesopt::PosteriorFixed::~PosteriorFixed().
|
pure virtual |
Computes the initial surrogate model and updates the kernel parameters estimation.
This function requires to recompute all covariance matrixes, inverses, etc. Use it with precaution.
Implemented in bayesopt::KernelRegressor.
|
pure virtual |
Function that returns the prediction of the GP for a query point in the hypercube [0,1].
| query | in the hypercube [0,1] to evaluate the Gaussian process |
Implemented in bayesopt::StudentTProcessNIG, bayesopt::ConditionalBayesProcess, bayesopt::GaussianProcessML, bayesopt::GaussianProcessNormal, bayesopt::StudentTProcessJeffreys, and bayesopt::GaussianProcess.
|
pure virtual |
Sequential update of the surrogate model by adding a new row to the Kernel matrix, more precisely, to its Cholesky decomposition.
It assumes that the kernel hyperparemeters do not change.
Implemented in bayesopt::KernelRegressor.