BayesOpt
bayesopt::KernelModel Class Reference
+ Collaboration diagram for bayesopt::KernelModel:

Public Member Functions

 KernelModel (size_t dim, Parameters parameters)
 
KernelgetKernel ()
 
void setHyperParameters (const vectord &theta)
 
vectord getHyperParameters ()
 
size_t nHyperParameters ()
 
void setKernel (const vectord &thetav, const vectord &stheta, std::string k_name, size_t dim)
 Select kernel (covariance function) for the surrogate process. More...
 
void setKernel (KernelParameters kernel, size_t dim)
 Wrapper of setKernel for C++ kernel structure.
 
void computeCorrMatrix (const vecOfvec &XX, matrixd &corrMatrix, double nugget)
 
void computeDerivativeCorrMatrix (const vecOfvec &XX, matrixd &corrMatrix, int dth_index)
 
vectord computeCrossCorrelation (const vecOfvec &XX, const vectord &query)
 
void computeCrossCorrelation (const vecOfvec &XX, const vectord &query, vectord &knx)
 
double computeSelfCorrelation (const vectord &query)
 
double kernelLogPrior ()
 

Private Member Functions

void setKernelPrior (const vectord &theta, const vectord &s_theta)
 Set prior (Gaussian) for kernel hyperparameters.
 

Private Attributes

boost::scoped_ptr< KernelmKernel
 Pointer to kernel function.
 
std::vector< boost::math::normal > priorKernel
 Prior of kernel parameters.
 

Detailed Description

Definition at line 90 of file kernel_functors.hpp.

Member Function Documentation

◆ setKernel()

void bayesopt::KernelModel::setKernel ( const vectord &  thetav,
const vectord &  stheta,
std::string  k_name,
size_t  dim 
)

Select kernel (covariance function) for the surrogate process.

Parameters
thetavkernel parameters (mean)
sthetakernel parameters (std)
k_namekernel name

Definition at line 118 of file kernel_functors.cpp.

References bayesopt::KernelFactory::create().


The documentation for this class was generated from the following files: