BayesOpt
bayesopt::GP_Hedge Class Reference

GP_Hedge model as describen in Hoffman et al. More...

#include <criteria_hedge.hpp>

+ Inheritance diagram for bayesopt::GP_Hedge:
+ Collaboration diagram for bayesopt::GP_Hedge:

Public Member Functions

void init (NonParametricProcess *proc)
 
double operator() (const vectord &x)
 
bool requireComparison ()
 
void initialCriteria ()
 
bool rotateCriteria ()
 
void pushResult (const vectord &prevResult)
 
std::string getBestCriteria (vectord &best)
 
std::string name ()
 
- Public Member Functions inherited from bayesopt::CombinedCriteria
void pushCriteria (Criteria *crit)
 
void setParameters (const vectord &theta)
 
size_t nParameters ()
 
- Public Member Functions inherited from bayesopt::Criteria
double evaluate (const vectord &x)
 
virtual void reset ()
 
void setRandomEngine (randEngine &eng)
 
virtual void update (const vectord &x)
 

Protected Member Functions

int update_hedge ()
 
virtual double computeLoss (const vectord &query)
 

Protected Attributes

vectord loss_
 
vectord gain_
 
vectord prob_
 
vectord cumprob_
 
CriteriamCurrentCriterium
 
std::vector< vectord > mBestLists
 
size_t mIndex
 
- Protected Attributes inherited from bayesopt::CombinedCriteria
boost::ptr_vector< CriteriamCriteriaList
 
- Protected Attributes inherited from bayesopt::Criteria
NonParametricProcessmProc
 
randEngine * mtRandom
 

Detailed Description

GP_Hedge model as describen in Hoffman et al.

[Hoffman2011]

The coefficients of the bandit algorithm has been carefully selected according to Shapire et al. Also, the implementation has been made to avoid over or underflow.

Definition at line 43 of file criteria_hedge.hpp.


The documentation for this class was generated from the following files: