|
BayesOpt
|
Python Module for BayesOptDiscrete. More...
Public Member Functions | |
| def | __init__ (self, x_set=None, n_dim=None, n_samples=None) |
| Let's define the parameters. More... | |
| def | parameters (self) |
| def | parameters (self, params) |
| def | evaluateSample (self, x_in) |
| Function for testing. More... | |
| def | optimize (self) |
| Main function. More... | |
Public Attributes | |
| params | |
| Library parameters. | |
| x_set | |
| Set of discrete points. | |
Python Module for BayesOptDiscrete.
Python module to get run BayesOpt library in a OO pattern. The objective module should inherit this one and override evaluateSample.
Definition at line 97 of file bayesoptmodule.py.
| def bayesoptmodule.BayesOptDiscrete.__init__ | ( | self, | |
x_set = None, |
|||
n_dim = None, |
|||
n_samples = None |
|||
| ) |
Let's define the parameters.
For different options: see parameters.h and parameters.cpp . If a parameter is not define, it will be automatically set to a default value.
Definition at line 104 of file bayesoptmodule.py.
| def bayesoptmodule.BayesOptDiscrete.evaluateSample | ( | self, | |
| x_in | |||
| ) |
Function for testing.
It should be overriden.
Definition at line 125 of file bayesoptmodule.py.
Referenced by bayesoptmodule.BayesOptDiscrete.optimize(), and bayesoptmodule.BayesOptCategorical.optimize().
| def bayesoptmodule.BayesOptDiscrete.optimize | ( | self | ) |
Main function.
Starts the optimization process.
Definition at line 129 of file bayesoptmodule.py.
References SystemCallsBranin.evaluateSample(), ExampleQuadratic.evaluateSample(), ExampleDisc.evaluateSample(), bayesoptmodule.BayesOptContinuous.evaluateSample(), bayesopt::BayesOptBase.evaluateSample(), XMLCallsBranin.evaluateSample(), bayesoptmodule.BayesOptDiscrete.evaluateSample(), bayesoptmodule.BayesOptContinuous.params, bayesopt::AtomicKernel.params, bayesoptmodule.BayesOptDiscrete.params, and bayesoptmodule.BayesOptDiscrete.x_set.