|
static double | evaluate_nlopt (unsigned int n, const double *x, double *grad, void *my_func_data) |
| Wrapper of inner optimization to be evaluated by NLOPT. More...
|
|
static double | evaluate_nlopt_grad (unsigned int n, const double *x, double *grad, void *my_func_data) |
| Wrapper of inner optimization to be evaluated by NLOPT. More...
|
|
Definition at line 44 of file inneroptimization.hpp.
◆ evaluate_nlopt()
double bayesopt::NLOPT_Optimization::evaluate_nlopt |
( |
unsigned int |
n, |
|
|
const double * |
x, |
|
|
double * |
grad, |
|
|
void * |
my_func_data |
|
) |
| |
|
static |
Wrapper of inner optimization to be evaluated by NLOPT.
- Parameters
-
n | # of dimensions |
x | input point |
grad | (NOT USED. Only for compatibily with NLOPT template, see evaluate_nlopt_grad) |
my_func_data | pointer to the NLOPT_Optimization object |
- Returns
- function evaluation
Definition at line 246 of file inneroptimization.cpp.
Referenced by run().
◆ evaluate_nlopt_grad()
double bayesopt::NLOPT_Optimization::evaluate_nlopt_grad |
( |
unsigned int |
n, |
|
|
const double * |
x, |
|
|
double * |
grad, |
|
|
void * |
my_func_data |
|
) |
| |
|
static |
Wrapper of inner optimization to be evaluated by NLOPT.
- Parameters
-
n | # of dimensions |
x | input point |
grad | returns gradient evaluation |
my_func_data | pointer to the NLOPT_Optimization object |
- Returns
- function evaluation
Definition at line 259 of file inneroptimization.cpp.
Referenced by run().
◆ localTrialAround()
double bayesopt::NLOPT_Optimization::localTrialAround |
( |
vectord & |
Xnext | ) |
|
Try some local optimization around a point.
- Parameters
-
Xnext | input: initial guess, output: result |
- Returns
- minimum value
Definition at line 109 of file inneroptimization.cpp.
◆ run()
double bayesopt::NLOPT_Optimization::run |
( |
vectord & |
Xnext | ) |
|
◆ setLimits() [1/2]
void bayesopt::NLOPT_Optimization::setLimits |
( |
const vectord & |
down, |
|
|
const vectord & |
up |
|
) |
| |
|
inline |
◆ setLimits() [2/2]
void bayesopt::NLOPT_Optimization::setLimits |
( |
double |
down, |
|
|
double |
up |
|
) |
| |
|
inline |
Limits of the hypercube assuming that all dimensions have the same limits.
Definition at line 131 of file inneroptimization.hpp.
◆ setMaxEvals()
void bayesopt::NLOPT_Optimization::setMaxEvals |
( |
size_t |
meval | ) |
|
|
inline |
Sets the maximum number of function evaluations.
Depending on the algorithm, it might stops earlier if convergence is reached.
Definition at line 122 of file inneroptimization.hpp.
The documentation for this class was generated from the following files: