|
BayesOpt
|
Bayesian optimization using different non-parametric processes as distributions over surrogate functions. More...
#include <posteriormodel.hpp>
Inheritance diagram for bayesopt::PosteriorModel:
Collaboration diagram for bayesopt::PosteriorModel:Public Member Functions | |
| PosteriorModel (size_t dim, Parameters params, randEngine &eng) | |
| Constructor. More... | |
| virtual | ~PosteriorModel () |
| Default destructor. | |
| virtual void | updateHyperParameters ()=0 |
| virtual void | fitSurrogateModel ()=0 |
| virtual void | updateSurrogateModel ()=0 |
| virtual double | evaluateCriteria (const vectord &query)=0 |
| virtual void | updateCriteria (const vectord &query)=0 |
| virtual bool | criteriaRequiresComparison ()=0 |
| virtual void | setFirstCriterium ()=0 |
| virtual bool | setNextCriterium (const vectord &prevResult)=0 |
| virtual std::string | getBestCriteria (vectord &best)=0 |
| void | setSamples (const matrixd &x, const vectord &y) |
| void | setSamples (const matrixd &x) |
| void | setSamples (const vectord &y) |
| void | setSample (const vectord &x, double y) |
| void | addSample (const vectord &x, double y) |
| double | getValueAtMinimum () |
| vectord | getPointAtMinimum () |
| void | plotDataset (TLogLevel level) |
| const Dataset * | getData () |
| virtual ProbabilityDistribution * | getPrediction (const vectord &query)=0 |
Static Public Member Functions | |
| static PosteriorModel * | create (size_t dim, Parameters params, randEngine &eng) |
Protected Attributes | |
| Parameters | mParameters |
| Configuration parameters. | |
| size_t | mDims |
| Number of dimensions. | |
| Dataset | mData |
| Dataset (x-> inputs, y-> labels/output) | |
| MeanModel | mMean |
Bayesian optimization using different non-parametric processes as distributions over surrogate functions.
Definition at line 43 of file posteriormodel.hpp.