BayesOpt
|
Bayesian optimization using different non-parametric processes as distributions over surrogate functions. More...
#include <posteriormodel.hpp>
Public Member Functions | |
PosteriorModel (size_t dim, Parameters params, randEngine &eng) | |
Constructor. More... | |
virtual | ~PosteriorModel () |
Default destructor. | |
virtual void | updateHyperParameters ()=0 |
virtual void | fitSurrogateModel ()=0 |
virtual void | updateSurrogateModel ()=0 |
virtual double | evaluateCriteria (const vectord &query)=0 |
virtual void | updateCriteria (const vectord &query)=0 |
virtual bool | criteriaRequiresComparison ()=0 |
virtual void | setFirstCriterium ()=0 |
virtual bool | setNextCriterium (const vectord &prevResult)=0 |
virtual std::string | getBestCriteria (vectord &best)=0 |
void | setSamples (const matrixd &x, const vectord &y) |
void | setSamples (const matrixd &x) |
void | setSamples (const vectord &y) |
void | setSample (const vectord &x, double y) |
void | addSample (const vectord &x, double y) |
double | getValueAtMinimum () |
vectord | getPointAtMinimum () |
void | plotDataset (TLogLevel level) |
const Dataset * | getData () |
virtual ProbabilityDistribution * | getPrediction (const vectord &query)=0 |
Static Public Member Functions | |
static PosteriorModel * | create (size_t dim, Parameters params, randEngine &eng) |
Protected Attributes | |
Parameters | mParameters |
Configuration parameters. | |
size_t | mDims |
Number of dimensions. | |
Dataset | mData |
Dataset (x-> inputs, y-> labels/output) | |
MeanModel | mMean |
Bayesian optimization using different non-parametric processes as distributions over surrogate functions.
Definition at line 43 of file posteriormodel.hpp.