| BayesOpt
    | 
Gaussian process with normal prior on the parameters. More...
#include <gaussian_process_normal.hpp>
 Inheritance diagram for bayesopt::GaussianProcessNormal:
 Inheritance diagram for bayesopt::GaussianProcessNormal: Collaboration diagram for bayesopt::GaussianProcessNormal:
 Collaboration diagram for bayesopt::GaussianProcessNormal:| Public Member Functions | |
| GaussianProcessNormal (size_t dim, Parameters params, const Dataset &data, MeanModel &mean, randEngine &eng) | |
| ProbabilityDistribution * | prediction (const vectord &query) | 
| Function that returns the prediction of the GP for a query point in the hypercube [0,1].  More... | |
|  Public Member Functions inherited from bayesopt::HierarchicalGaussianProcess | |
| HierarchicalGaussianProcess (size_t dim, Parameters params, const Dataset &data, MeanModel &mean, randEngine &eng) | |
|  Public Member Functions inherited from bayesopt::ConditionalBayesProcess | |
| ConditionalBayesProcess (size_t dim, Parameters parameters, const Dataset &data, MeanModel &mean, randEngine &eng) | |
| double | evaluate (const vectord &x) | 
| Computes the score (eg:likelihood) of the kernel parameters.  More... | |
| double | evaluateKernelParams () | 
| Computes the score (eg:likelihood) of the current kernel parameters.  More... | |
|  Public Member Functions inherited from bayesopt::KernelRegressor | |
| KernelRegressor (size_t dim, Parameters parameters, const Dataset &data, MeanModel &mean, randEngine &eng) | |
| void | fitSurrogateModel () | 
| Computes the initial surrogate model and updates the kernel parameters estimation.  More... | |
| void | updateSurrogateModel () | 
| Sequential update of the surrogate model by adding a new row to the Kernel matrix, more precisely, to its Cholesky decomposition.  More... | |
| double | getSignalVariance () | 
| size_t | nHyperParameters () | 
| vectord | getHyperParameters () | 
| void | setHyperParameters (const vectord &theta) | 
|  Public Member Functions inherited from bayesopt::NonParametricProcess | |
| NonParametricProcess (size_t dim, Parameters parameters, const Dataset &data, MeanModel &mean, randEngine &eng) | |
| double | getValueAtMinimum () | 
| const Dataset * | getData () | 
| double | getSignalVariance () | 
| Private Member Functions | |
| double | negativeLogLikelihood () | 
| Computes the negative log likelihood and its gradient of the data.  More... | |
| void | precomputePrediction () | 
| Precompute some values of the prediction that do not depends on the query. | |
| Private Attributes | |
| vectord | mWMap | 
| GP posterior parameters. | |
| vectord | mW0 | 
| vectord | mInvVarW | 
| vectord | mVf | 
| Precomputed GP prediction operations. | |
| matrixd | mKF | 
| matrixd | mD | 
| GaussianDistribution * | d_ | 
| Predictive distributions. | |
| Additional Inherited Members | |
|  Static Public Member Functions inherited from bayesopt::NonParametricProcess | |
| static NonParametricProcess * | create (size_t dim, Parameters parameters, const Dataset &data, MeanModel &mean, randEngine &eng) | 
| Factory model generator for surrogate models.  More... | |
|  Protected Member Functions inherited from bayesopt::HierarchicalGaussianProcess | |
| double | negativeTotalLogLikelihood () | 
| Computes the negative log likelihood of the data for all the parameters.  More... | |
|  Protected Member Functions inherited from bayesopt::KernelRegressor | |
| void | computeCorrMatrix (matrixd &corrMatrix) | 
| Computes the Correlation (Kernel or Gram) matrix. | |
| matrixd | computeCorrMatrix () | 
| Computes the Correlation (Kernel or Gram) matrix. | |
| matrixd | computeDerivativeCorrMatrix (int dth_index) | 
| Computes the derivative of the correlation matrix with respect to the dth hyperparameter. | |
| vectord | computeCrossCorrelation (const vectord &query) | 
| double | computeSelfCorrelation (const vectord &query) | 
| void | computeCholeskyCorrelation () | 
| Computes the Cholesky decomposition of the Correlation matrix. | |
|  Protected Attributes inherited from bayesopt::KernelRegressor | |
| matrixd | mL | 
| Cholesky decomposition of the Correlation matrix. | |
| score_type | mScoreType | 
| learning_type | mLearnType | 
| bool | mLearnAll | 
| KernelModel | mKernel | 
|  Protected Attributes inherited from bayesopt::NonParametricProcess | |
| const Dataset & | mData | 
| double | mSigma | 
| Signal variance. | |
| size_t | dim_ | 
| MeanModel & | mMean | 
Gaussian process with normal prior on the parameters.
Definition at line 42 of file gaussian_process_normal.hpp.
| 
 | privatevirtual | 
Computes the negative log likelihood and its gradient of the data.
Implements bayesopt::ConditionalBayesProcess.
Definition at line 93 of file gaussian_process_normal.cpp.
References bayesopt::KernelRegressor::computeCorrMatrix(), bayesopt::MeanModel::mFeatM, and bayesopt::Dataset::mY.
| 
 | virtual | 
Function that returns the prediction of the GP for a query point in the hypercube [0,1].
| query | in the hypercube [0,1] to evaluate the Gaussian process | 
Implements bayesopt::ConditionalBayesProcess.
Definition at line 64 of file gaussian_process_normal.cpp.
References bayesopt::GaussianProcessML::d_, bayesopt::KernelRegressor::mL, bayesopt::NonParametricProcess::mSigma, and bayesopt::GaussianDistribution::setMeanAndStd().