BayesOpt
bayesopt::GP_Hedge_Random Class Reference

Modification of the GP_Hedge algorithm where the bandit gains are random outcomes (like Thompson sampling). More...

#include <criteria_hedge.hpp>

+ Inheritance diagram for bayesopt::GP_Hedge_Random:
+ Collaboration diagram for bayesopt::GP_Hedge_Random:

Public Member Functions

std::string name ()
 
- Public Member Functions inherited from bayesopt::GP_Hedge
void init (NonParametricProcess *proc)
 
double operator() (const vectord &x)
 
bool requireComparison ()
 
void initialCriteria ()
 
bool rotateCriteria ()
 
void pushResult (const vectord &prevResult)
 
std::string getBestCriteria (vectord &best)
 
- Public Member Functions inherited from bayesopt::CombinedCriteria
void pushCriteria (Criteria *crit)
 
void setParameters (const vectord &theta)
 
size_t nParameters ()
 
- Public Member Functions inherited from bayesopt::Criteria
double evaluate (const vectord &x)
 
virtual void reset ()
 
void setRandomEngine (randEngine &eng)
 
virtual void update (const vectord &x)
 

Protected Member Functions

virtual double computeLoss (const vectord &query)
 
- Protected Member Functions inherited from bayesopt::GP_Hedge
int update_hedge ()
 

Additional Inherited Members

- Protected Attributes inherited from bayesopt::GP_Hedge
vectord loss_
 
vectord gain_
 
vectord prob_
 
vectord cumprob_
 
CriteriamCurrentCriterium
 
std::vector< vectord > mBestLists
 
size_t mIndex
 
- Protected Attributes inherited from bayesopt::CombinedCriteria
boost::ptr_vector< CriteriamCriteriaList
 
- Protected Attributes inherited from bayesopt::Criteria
NonParametricProcessmProc
 
randEngine * mtRandom
 

Detailed Description

Modification of the GP_Hedge algorithm where the bandit gains are random outcomes (like Thompson sampling).

Definition at line 75 of file criteria_hedge.hpp.


The documentation for this class was generated from the following file: