BayesOpt
bayesoptmodule.BayesOptContinuous Class Reference

Python Module for BayesOptContinuous. More...

+ Inheritance diagram for bayesoptmodule.BayesOptContinuous:
+ Collaboration diagram for bayesoptmodule.BayesOptContinuous:

Public Member Functions

def __init__ (self, n_dim)
 Let's define the parameters. More...
 
def parameters (self)
 
def parameters (self, params)
 
def lower_bound (self)
 
def lower_bound (self, lb)
 
def upper_bound (self)
 
def upper_bound (self, ub)
 
def evaluateSample (self, x_in)
 Function for testing. More...
 
def optimize (self)
 Main function. More...
 

Public Attributes

 params
 Library parameters.
 
 n_dim
 n dimensions
 
 lb
 Lower bounds.
 
 ub
 Upper bounds.
 

Detailed Description

Python Module for BayesOptContinuous.

Python module to get run BayesOpt library in a OO pattern. The objective module should inherit this one and override evaluateSample.

Definition at line 38 of file bayesoptmodule.py.

Constructor & Destructor Documentation

◆ __init__()

def bayesoptmodule.BayesOptContinuous.__init__ (   self,
  n_dim 
)

Let's define the parameters.

For different options: see parameters.h and parameters.cpp . If a parameter is not defined, it will be automatically set to a default value.

Definition at line 45 of file bayesoptmodule.py.

Member Function Documentation

◆ evaluateSample()

def bayesoptmodule.BayesOptContinuous.evaluateSample (   self,
  x_in 
)

Function for testing.

It should be overriden.

Definition at line 81 of file bayesoptmodule.py.

Referenced by bayesoptmodule.BayesOptContinuous.optimize(), bayesoptmodule.BayesOptDiscrete.optimize(), and bayesoptmodule.BayesOptCategorical.optimize().

◆ optimize()


The documentation for this class was generated from the following file: