|
BayesOpt
|
Greedy A-Optimality criterion. More...
#include <criteria_a_opt.hpp>
Inheritance diagram for bayesopt::GreedyAOptimality:
Collaboration diagram for bayesopt::GreedyAOptimality:Public Member Functions | |
| void | setParameters (const vectord ¶ms) |
| size_t | nParameters () |
| double | operator() (const vectord &x) |
| std::string | name () |
Public Member Functions inherited from bayesopt::Criteria | |
| virtual void | init (NonParametricProcess *proc) |
| double | evaluate (const vectord &x) |
| virtual void | reset () |
| void | setRandomEngine (randEngine &eng) |
| virtual void | pushCriteria (Criteria *crit) |
| virtual bool | requireComparison () |
| virtual void | initialCriteria () |
| virtual void | update (const vectord &x) |
| virtual bool | rotateCriteria () |
| virtual void | pushResult (const vectord &prevResult) |
| virtual std::string | getBestCriteria (vectord &best) |
Additional Inherited Members | |
Protected Attributes inherited from bayesopt::Criteria | |
| NonParametricProcess * | mProc |
| randEngine * | mtRandom |
Greedy A-Optimality criterion.
Used for learning the function, not to minimize. Some authors name it I-optimality because it minimizes the error on the prediction, not on the parameters.
Definition at line 41 of file criteria_a_opt.hpp.