BayesOpt
bayesopt::HierarchicalGaussianProcess Class Reference

Virtual class for hierarchical Gaussian processes. More...

#include <gaussian_process_hierarchical.hpp>

+ Inheritance diagram for bayesopt::HierarchicalGaussianProcess:
+ Collaboration diagram for bayesopt::HierarchicalGaussianProcess:

Public Member Functions

 HierarchicalGaussianProcess (size_t dim, Parameters params, const Dataset &data, MeanModel &mean, randEngine &eng)
 
- Public Member Functions inherited from bayesopt::ConditionalBayesProcess
 ConditionalBayesProcess (size_t dim, Parameters parameters, const Dataset &data, MeanModel &mean, randEngine &eng)
 
virtual ProbabilityDistributionprediction (const vectord &query)=0
 Function that returns the prediction of the GP for a query point in the hypercube [0,1]. More...
 
double evaluate (const vectord &x)
 Computes the score (eg:likelihood) of the kernel parameters. More...
 
double evaluateKernelParams ()
 Computes the score (eg:likelihood) of the current kernel parameters. More...
 
- Public Member Functions inherited from bayesopt::KernelRegressor
 KernelRegressor (size_t dim, Parameters parameters, const Dataset &data, MeanModel &mean, randEngine &eng)
 
void fitSurrogateModel ()
 Computes the initial surrogate model and updates the kernel parameters estimation. More...
 
void updateSurrogateModel ()
 Sequential update of the surrogate model by adding a new row to the Kernel matrix, more precisely, to its Cholesky decomposition. More...
 
double getSignalVariance ()
 
size_t nHyperParameters ()
 
vectord getHyperParameters ()
 
void setHyperParameters (const vectord &theta)
 
- Public Member Functions inherited from bayesopt::NonParametricProcess
 NonParametricProcess (size_t dim, Parameters parameters, const Dataset &data, MeanModel &mean, randEngine &eng)
 
double getValueAtMinimum ()
 
const DatasetgetData ()
 
double getSignalVariance ()
 

Protected Member Functions

double negativeTotalLogLikelihood ()
 Computes the negative log likelihood of the data for all the parameters. More...
 
- Protected Member Functions inherited from bayesopt::ConditionalBayesProcess
virtual double negativeLogLikelihood ()=0
 Computes the negative log likelihood of the data for the kernel hyperparameters. More...
 
- Protected Member Functions inherited from bayesopt::KernelRegressor
virtual void precomputePrediction ()=0
 Sets the kind of learning methodology for kernel hyperparameters. More...
 
void computeCorrMatrix (matrixd &corrMatrix)
 Computes the Correlation (Kernel or Gram) matrix.
 
matrixd computeCorrMatrix ()
 Computes the Correlation (Kernel or Gram) matrix.
 
matrixd computeDerivativeCorrMatrix (int dth_index)
 Computes the derivative of the correlation matrix with respect to the dth hyperparameter.
 
vectord computeCrossCorrelation (const vectord &query)
 
double computeSelfCorrelation (const vectord &query)
 
void computeCholeskyCorrelation ()
 Computes the Cholesky decomposition of the Correlation matrix.
 

Additional Inherited Members

- Static Public Member Functions inherited from bayesopt::NonParametricProcess
static NonParametricProcesscreate (size_t dim, Parameters parameters, const Dataset &data, MeanModel &mean, randEngine &eng)
 Factory model generator for surrogate models. More...
 
- Protected Attributes inherited from bayesopt::KernelRegressor
matrixd mL
 Cholesky decomposition of the Correlation matrix.
 
score_type mScoreType
 
learning_type mLearnType
 
bool mLearnAll
 
KernelModel mKernel
 
- Protected Attributes inherited from bayesopt::NonParametricProcess
const DatasetmData
 
double mSigma
 Signal variance.
 
size_t dim_
 
MeanModelmMean
 

Detailed Description

Virtual class for hierarchical Gaussian processes.

Definition at line 41 of file gaussian_process_hierarchical.hpp.

Member Function Documentation

◆ negativeTotalLogLikelihood()

double bayesopt::HierarchicalGaussianProcess::negativeTotalLogLikelihood ( )
protectedvirtual

Computes the negative log likelihood of the data for all the parameters.

Returns
value negative log likelihood

Implements bayesopt::ConditionalBayesProcess.

Definition at line 37 of file gaussian_process_hierarchical.cpp.

References bayesopt::utils::cholesky_decompose(), bayesopt::utils::cholesky_solve(), bayesopt::KernelRegressor::computeCorrMatrix(), bayesopt::MeanModel::mFeatM, and bayesopt::Dataset::mY.

Referenced by bayesopt::GaussianProcessML::negativeLogLikelihood().


The documentation for this class was generated from the following files: