BayesOpt
|
Bayesian optimization using different non-parametric processes as distributions over surrogate functions. More...
#include <posterior_empirical.hpp>
Public Member Functions | |
EmpiricalBayes (size_t dim, Parameters params, randEngine &eng) | |
Constructor. More... | |
virtual | ~EmpiricalBayes () |
Default destructor. | |
void | updateHyperParameters () |
void | fitSurrogateModel () |
void | updateSurrogateModel () |
double | evaluateCriteria (const vectord &query) |
void | updateCriteria (const vectord &query) |
bool | criteriaRequiresComparison () |
void | setFirstCriterium () |
bool | setNextCriterium (const vectord &prevResult) |
std::string | getBestCriteria (vectord &best) |
ProbabilityDistribution * | getPrediction (const vectord &query) |
Public Member Functions inherited from bayesopt::PosteriorModel | |
PosteriorModel (size_t dim, Parameters params, randEngine &eng) | |
Constructor. More... | |
virtual | ~PosteriorModel () |
Default destructor. | |
void | setSamples (const matrixd &x, const vectord &y) |
void | setSamples (const matrixd &x) |
void | setSamples (const vectord &y) |
void | setSample (const vectord &x, double y) |
void | addSample (const vectord &x, double y) |
double | getValueAtMinimum () |
vectord | getPointAtMinimum () |
void | plotDataset (TLogLevel level) |
const Dataset * | getData () |
Private Member Functions | |
void | setSurrogateModel (randEngine &eng) |
void | setCriteria (randEngine &eng) |
Private Attributes | |
boost::scoped_ptr< NonParametricProcess > | mGP |
Pointer to surrogate model. | |
boost::scoped_ptr< Criteria > | mCrit |
Metacriteria model. | |
boost::scoped_ptr< NLOPT_Optimization > | kOptimizer |
Additional Inherited Members | |
Static Public Member Functions inherited from bayesopt::PosteriorModel | |
static PosteriorModel * | create (size_t dim, Parameters params, randEngine &eng) |
Protected Attributes inherited from bayesopt::PosteriorModel | |
Parameters | mParameters |
Configuration parameters. | |
size_t | mDims |
Number of dimensions. | |
Dataset | mData |
Dataset (x-> inputs, y-> labels/output) | |
MeanModel | mMean |
Bayesian optimization using different non-parametric processes as distributions over surrogate functions.
Definition at line 45 of file posterior_empirical.hpp.
bayesopt::EmpiricalBayes::EmpiricalBayes | ( | size_t | dim, |
Parameters | params, | ||
randEngine & | eng | ||
) |
Constructor.
params | set of parameters (see parameters.hpp) |
Definition at line 31 of file posterior_empirical.cpp.
References mGP, bayesopt::PosteriorModel::mParameters, and bayesopt::Parameters::sc_type.