|
BayesOpt
|
Bayesian optimization using different non-parametric processes as distributions over surrogate functions. More...
#include <posterior_empirical.hpp>
Inheritance diagram for bayesopt::EmpiricalBayes:
Collaboration diagram for bayesopt::EmpiricalBayes:Public Member Functions | |
| EmpiricalBayes (size_t dim, Parameters params, randEngine &eng) | |
| Constructor. More... | |
| virtual | ~EmpiricalBayes () |
| Default destructor. | |
| void | updateHyperParameters () |
| void | fitSurrogateModel () |
| void | updateSurrogateModel () |
| double | evaluateCriteria (const vectord &query) |
| void | updateCriteria (const vectord &query) |
| bool | criteriaRequiresComparison () |
| void | setFirstCriterium () |
| bool | setNextCriterium (const vectord &prevResult) |
| std::string | getBestCriteria (vectord &best) |
| ProbabilityDistribution * | getPrediction (const vectord &query) |
Public Member Functions inherited from bayesopt::PosteriorModel | |
| PosteriorModel (size_t dim, Parameters params, randEngine &eng) | |
| Constructor. More... | |
| virtual | ~PosteriorModel () |
| Default destructor. | |
| void | setSamples (const matrixd &x, const vectord &y) |
| void | setSamples (const matrixd &x) |
| void | setSamples (const vectord &y) |
| void | setSample (const vectord &x, double y) |
| void | addSample (const vectord &x, double y) |
| double | getValueAtMinimum () |
| vectord | getPointAtMinimum () |
| void | plotDataset (TLogLevel level) |
| const Dataset * | getData () |
Private Member Functions | |
| void | setSurrogateModel (randEngine &eng) |
| void | setCriteria (randEngine &eng) |
Private Attributes | |
| boost::scoped_ptr< NonParametricProcess > | mGP |
| Pointer to surrogate model. | |
| boost::scoped_ptr< Criteria > | mCrit |
| Metacriteria model. | |
| boost::scoped_ptr< NLOPT_Optimization > | kOptimizer |
Additional Inherited Members | |
Static Public Member Functions inherited from bayesopt::PosteriorModel | |
| static PosteriorModel * | create (size_t dim, Parameters params, randEngine &eng) |
Protected Attributes inherited from bayesopt::PosteriorModel | |
| Parameters | mParameters |
| Configuration parameters. | |
| size_t | mDims |
| Number of dimensions. | |
| Dataset | mData |
| Dataset (x-> inputs, y-> labels/output) | |
| MeanModel | mMean |
Bayesian optimization using different non-parametric processes as distributions over surrogate functions.
Definition at line 45 of file posterior_empirical.hpp.
| bayesopt::EmpiricalBayes::EmpiricalBayes | ( | size_t | dim, |
| Parameters | params, | ||
| randEngine & | eng | ||
| ) |
Constructor.
| params | set of parameters (see parameters.hpp) |
Definition at line 31 of file posterior_empirical.cpp.
References mGP, bayesopt::PosteriorModel::mParameters, and bayesopt::Parameters::sc_type.