BayesOpt
bayesopt::EmpiricalBayes Class Reference

Bayesian optimization using different non-parametric processes as distributions over surrogate functions. More...

#include <posterior_empirical.hpp>

+ Inheritance diagram for bayesopt::EmpiricalBayes:
+ Collaboration diagram for bayesopt::EmpiricalBayes:

Public Member Functions

 EmpiricalBayes (size_t dim, Parameters params, randEngine &eng)
 Constructor. More...
 
virtual ~EmpiricalBayes ()
 Default destructor.
 
void updateHyperParameters ()
 
void fitSurrogateModel ()
 
void updateSurrogateModel ()
 
double evaluateCriteria (const vectord &query)
 
void updateCriteria (const vectord &query)
 
bool criteriaRequiresComparison ()
 
void setFirstCriterium ()
 
bool setNextCriterium (const vectord &prevResult)
 
std::string getBestCriteria (vectord &best)
 
ProbabilityDistributiongetPrediction (const vectord &query)
 
- Public Member Functions inherited from bayesopt::PosteriorModel
 PosteriorModel (size_t dim, Parameters params, randEngine &eng)
 Constructor. More...
 
virtual ~PosteriorModel ()
 Default destructor.
 
void setSamples (const matrixd &x, const vectord &y)
 
void setSamples (const matrixd &x)
 
void setSamples (const vectord &y)
 
void setSample (const vectord &x, double y)
 
void addSample (const vectord &x, double y)
 
double getValueAtMinimum ()
 
vectord getPointAtMinimum ()
 
void plotDataset (TLogLevel level)
 
const DatasetgetData ()
 

Private Member Functions

void setSurrogateModel (randEngine &eng)
 
void setCriteria (randEngine &eng)
 

Private Attributes

boost::scoped_ptr< NonParametricProcessmGP
 Pointer to surrogate model.
 
boost::scoped_ptr< CriteriamCrit
 Metacriteria model.
 
boost::scoped_ptr< NLOPT_OptimizationkOptimizer
 

Additional Inherited Members

- Static Public Member Functions inherited from bayesopt::PosteriorModel
static PosteriorModelcreate (size_t dim, Parameters params, randEngine &eng)
 
- Protected Attributes inherited from bayesopt::PosteriorModel
Parameters mParameters
 Configuration parameters.
 
size_t mDims
 Number of dimensions.
 
Dataset mData
 Dataset (x-> inputs, y-> labels/output)
 
MeanModel mMean
 

Detailed Description

Bayesian optimization using different non-parametric processes as distributions over surrogate functions.

Definition at line 45 of file posterior_empirical.hpp.

Constructor & Destructor Documentation

◆ EmpiricalBayes()

bayesopt::EmpiricalBayes::EmpiricalBayes ( size_t  dim,
Parameters  params,
randEngine &  eng 
)

Constructor.

Parameters
paramsset of parameters (see parameters.hpp)

Definition at line 31 of file posterior_empirical.cpp.

References mGP, bayesopt::PosteriorModel::mParameters, and bayesopt::Parameters::sc_type.


The documentation for this class was generated from the following files: