BayesOpt
|
ackley.m | |
bayesopt.h | BayesOpt wrapper for C interface |
bayesopt.hpp | BayesOpt main C++ interface |
bayesoptbase.cpp | |
bayesoptbase.hpp | BayesOpt common module for interfaces |
bayesoptcatmex.c | |
bayesoptcont.cpp | |
bayesoptcont.m | |
bayesoptdisc.cpp | |
bayesoptdisc.m | |
bayesoptdiscmex.c | |
bayesoptextras.h | Helper functions to Matlab/Octave wrappers |
bayesoptmex.c | |
bayesoptmodule.py | BayesOpt wrapper for Python interface (OOP) |
bayesoptwpr.cpp | |
bo_branin.cpp | |
bo_branin_display.cpp | |
bo_branin_mcmc.cpp | |
bo_branin_timed.cpp | |
bo_camelback.cpp | |
bo_compare.cpp | |
bo_cont.cpp | |
bo_disc.cpp | |
bo_display.cpp | |
bo_hartmann.cpp | |
bo_oned.cpp | |
bopt_state.cpp | |
bopt_state.hpp | Representation of a optimization state |
boundingbox.hpp | Module for box constrain management |
branin.m | |
branin_system_calls.cpp | |
branin_xml.cpp | |
braninhighdim.m | |
camelback.m | |
CMakeCCompilerId.c | |
CMakeCXXCompilerId.cpp | |
compile_matlab.m | |
compile_octave.m | |
conditionalbayesprocess.cpp | |
conditionalbayesprocess.hpp | Kernel based nonparametric process, conditional on kernel hyperparameters |
criteria_a_opt.hpp | A-optimality (uncertainty) based criteria |
criteria_combined.hpp | Abstract module for combined criteria |
criteria_distance.hpp | Cost for selecting distant points |
criteria_ei.hpp | Expected improvement based criteria |
criteria_expected.hpp | Criterion based on the expected value of the function |
criteria_functors.cpp | |
criteria_functors.hpp | Abstract and factory modules for criteria |
criteria_hedge.cpp | |
criteria_hedge.hpp | Portfolio selection of criteria based on Hedge algorithm |
criteria_lcb.hpp | Lower confidence bound based criteria |
criteria_mi.hpp | |
criteria_poi.hpp | Probability of improvement |
criteria_prod.hpp | Product of multiple criteria |
criteria_sum.hpp | Sum of multiple criteria |
criteria_thompson.hpp | Thompson and optimistic sampling criteria |
dataset.cpp | |
dataset.hpp | Dataset model |
demo_cam.py | |
demo_dimscaling.py | |
demo_distance.py | |
demo_multiprocess.py | |
demo_quad.py | |
demo_rembo.m | |
demo_test.m | |
displaygp.cpp | |
displaygp.hpp | Plots the evolution (nonparametric process, criteria or contour plots) of 1D and 2D problems |
dll_stuff.h | |
eval_branin.py | |
eval_branin_xml.py | |
feature_tests.c | |
feature_tests.cxx | |
fileparser.cpp | |
fileparser.hpp | Functions to write and parse data files |
gauss_distribution.cpp | |
gauss_distribution.hpp | Gaussian probability distribution |
gaussian_process.cpp | |
gaussian_process.hpp | Standard zero mean gaussian process with noisy observations |
gaussian_process_hierarchical.cpp | |
gaussian_process_hierarchical.hpp | Hierarchical model for Gaussian process |
gaussian_process_ml.cpp | |
gaussian_process_ml.hpp | Gaussian process with ML parameters |
gaussian_process_normal.cpp | |
gaussian_process_normal.hpp | Gaussian process with normal prior on the parameters |
gpmlnlopt.m | |
gpmltest.m | |
gridsampling.hpp | Regular grid sampling |
hartmann.m | |
indexvector.hpp | Generators for index vectors |
inneroptimization.cpp | |
inneroptimization.hpp | C++ wrapper of the NLOPT library |
kernel_atomic.hpp | Atomic (simple) kernel functions |
kernel_combined.hpp | Kernel functions that combine other kernels |
kernel_const.hpp | |
kernel_functors.cpp | |
kernel_functors.hpp | Kernel (covariance) functions |
kernel_gaussian.hpp | |
kernel_hamming.hpp | |
kernel_linear.hpp | |
kernel_matern.hpp | |
kernel_polynomial.hpp | |
kernel_prod.hpp | |
kernel_rq.hpp | |
kernel_sum.hpp | |
kernelregressor.cpp | |
kernelregressor.hpp | Nonparametric process abstract module |
langermann.m | |
lhs.hpp | Latin Hypercube Sampling |
log.hpp | Modules and helper macros for logging |
mcmc_sampler.cpp | |
mcmc_sampler.hpp | Markov Chain Monte Carlo algorithms |
mean_atomic.hpp | Atomic (simple) parametric functions |
mean_combined.hpp | Parametric functions that combine other functions |
mean_functors.cpp | |
mean_functors.hpp | Mean (parametric) functions |
michalewicz.m | |
nei.m | |
neinlopt.m | |
nonparametricprocess.cpp | |
nonparametricprocess.hpp | Abstract module for a Bayesian regressor |
optimizable.hpp | Abstract class for optimizable objects |
param_loader.cpp | |
param_loader.hpp | Allows to load parameters from file |
parameters.cpp | |
parameters.h | Parameter definitions |
parameters.hpp | Parameter definitions |
parser.cpp | |
parser.hpp | Functions to parse strings |
posterior_empirical.cpp | |
posterior_empirical.hpp | |
posterior_fixed.cpp | |
posterior_fixed.hpp | Posterior model based on fixed kernel parameters |
posterior_mcmc.cpp | |
posterior_mcmc.hpp | Posterior distribution on GPs based on MCMC over kernel parameters |
posteriormodel.cpp | |
posteriormodel.hpp | Abstract interface for posterior model/criteria |
prob_distribution.hpp | Interface for probability models |
quadratic.m | |
randgen.hpp | Boost types for random number generation |
readlog.m | |
rosenbrock.m | |
specialtypes.hpp | Boost vector and matrix types |
student_t_distribution.cpp | |
student_t_distribution.hpp | Student's t probability distribution |
student_t_process_jef.cpp | |
student_t_process_jef.hpp | Student T process with Jeffreys priors |
student_t_process_nig.cpp | |
student_t_process_nig.hpp | Student's t process with Normal-Inverse-Gamma hyperprior on mean and signal variance parameters |
testfunctions.hpp | |
ublas_cholesky.hpp | Cholesky decomposition |
ublas_elementwise.hpp | Elementwise operations for ublas vector/matrix |
ublas_extra.cpp | |
ublas_extra.hpp | Extra functions for Ublas library |
ublas_trace.hpp |