|
BayesOpt
|
| ackley.m | |
| bayesopt.h | BayesOpt wrapper for C interface |
| bayesopt.hpp | BayesOpt main C++ interface |
| bayesoptbase.cpp | |
| bayesoptbase.hpp | BayesOpt common module for interfaces |
| bayesoptcatmex.c | |
| bayesoptcont.cpp | |
| bayesoptcont.m | |
| bayesoptdisc.cpp | |
| bayesoptdisc.m | |
| bayesoptdiscmex.c | |
| bayesoptextras.h | Helper functions to Matlab/Octave wrappers |
| bayesoptmex.c | |
| bayesoptmodule.py | BayesOpt wrapper for Python interface (OOP) |
| bayesoptwpr.cpp | |
| bo_branin.cpp | |
| bo_branin_display.cpp | |
| bo_branin_mcmc.cpp | |
| bo_branin_timed.cpp | |
| bo_camelback.cpp | |
| bo_compare.cpp | |
| bo_cont.cpp | |
| bo_disc.cpp | |
| bo_display.cpp | |
| bo_hartmann.cpp | |
| bo_oned.cpp | |
| bopt_state.cpp | |
| bopt_state.hpp | Representation of a optimization state |
| boundingbox.hpp | Module for box constrain management |
| branin.m | |
| branin_system_calls.cpp | |
| branin_xml.cpp | |
| braninhighdim.m | |
| camelback.m | |
| CMakeCCompilerId.c | |
| CMakeCXXCompilerId.cpp | |
| compile_matlab.m | |
| compile_octave.m | |
| conditionalbayesprocess.cpp | |
| conditionalbayesprocess.hpp | Kernel based nonparametric process, conditional on kernel hyperparameters |
| criteria_a_opt.hpp | A-optimality (uncertainty) based criteria |
| criteria_combined.hpp | Abstract module for combined criteria |
| criteria_distance.hpp | Cost for selecting distant points |
| criteria_ei.hpp | Expected improvement based criteria |
| criteria_expected.hpp | Criterion based on the expected value of the function |
| criteria_functors.cpp | |
| criteria_functors.hpp | Abstract and factory modules for criteria |
| criteria_hedge.cpp | |
| criteria_hedge.hpp | Portfolio selection of criteria based on Hedge algorithm |
| criteria_lcb.hpp | Lower confidence bound based criteria |
| criteria_mi.hpp | |
| criteria_poi.hpp | Probability of improvement |
| criteria_prod.hpp | Product of multiple criteria |
| criteria_sum.hpp | Sum of multiple criteria |
| criteria_thompson.hpp | Thompson and optimistic sampling criteria |
| dataset.cpp | |
| dataset.hpp | Dataset model |
| demo_cam.py | |
| demo_dimscaling.py | |
| demo_distance.py | |
| demo_multiprocess.py | |
| demo_quad.py | |
| demo_rembo.m | |
| demo_test.m | |
| displaygp.cpp | |
| displaygp.hpp | Plots the evolution (nonparametric process, criteria or contour plots) of 1D and 2D problems |
| dll_stuff.h | |
| eval_branin.py | |
| eval_branin_xml.py | |
| feature_tests.c | |
| feature_tests.cxx | |
| fileparser.cpp | |
| fileparser.hpp | Functions to write and parse data files |
| gauss_distribution.cpp | |
| gauss_distribution.hpp | Gaussian probability distribution |
| gaussian_process.cpp | |
| gaussian_process.hpp | Standard zero mean gaussian process with noisy observations |
| gaussian_process_hierarchical.cpp | |
| gaussian_process_hierarchical.hpp | Hierarchical model for Gaussian process |
| gaussian_process_ml.cpp | |
| gaussian_process_ml.hpp | Gaussian process with ML parameters |
| gaussian_process_normal.cpp | |
| gaussian_process_normal.hpp | Gaussian process with normal prior on the parameters |
| gpmlnlopt.m | |
| gpmltest.m | |
| gridsampling.hpp | Regular grid sampling |
| hartmann.m | |
| indexvector.hpp | Generators for index vectors |
| inneroptimization.cpp | |
| inneroptimization.hpp | C++ wrapper of the NLOPT library |
| kernel_atomic.hpp | Atomic (simple) kernel functions |
| kernel_combined.hpp | Kernel functions that combine other kernels |
| kernel_const.hpp | |
| kernel_functors.cpp | |
| kernel_functors.hpp | Kernel (covariance) functions |
| kernel_gaussian.hpp | |
| kernel_hamming.hpp | |
| kernel_linear.hpp | |
| kernel_matern.hpp | |
| kernel_polynomial.hpp | |
| kernel_prod.hpp | |
| kernel_rq.hpp | |
| kernel_sum.hpp | |
| kernelregressor.cpp | |
| kernelregressor.hpp | Nonparametric process abstract module |
| langermann.m | |
| lhs.hpp | Latin Hypercube Sampling |
| log.hpp | Modules and helper macros for logging |
| mcmc_sampler.cpp | |
| mcmc_sampler.hpp | Markov Chain Monte Carlo algorithms |
| mean_atomic.hpp | Atomic (simple) parametric functions |
| mean_combined.hpp | Parametric functions that combine other functions |
| mean_functors.cpp | |
| mean_functors.hpp | Mean (parametric) functions |
| michalewicz.m | |
| nei.m | |
| neinlopt.m | |
| nonparametricprocess.cpp | |
| nonparametricprocess.hpp | Abstract module for a Bayesian regressor |
| optimizable.hpp | Abstract class for optimizable objects |
| param_loader.cpp | |
| param_loader.hpp | Allows to load parameters from file |
| parameters.cpp | |
| parameters.h | Parameter definitions |
| parameters.hpp | Parameter definitions |
| parser.cpp | |
| parser.hpp | Functions to parse strings |
| posterior_empirical.cpp | |
| posterior_empirical.hpp | |
| posterior_fixed.cpp | |
| posterior_fixed.hpp | Posterior model based on fixed kernel parameters |
| posterior_mcmc.cpp | |
| posterior_mcmc.hpp | Posterior distribution on GPs based on MCMC over kernel parameters |
| posteriormodel.cpp | |
| posteriormodel.hpp | Abstract interface for posterior model/criteria |
| prob_distribution.hpp | Interface for probability models |
| quadratic.m | |
| randgen.hpp | Boost types for random number generation |
| readlog.m | |
| rosenbrock.m | |
| specialtypes.hpp | Boost vector and matrix types |
| student_t_distribution.cpp | |
| student_t_distribution.hpp | Student's t probability distribution |
| student_t_process_jef.cpp | |
| student_t_process_jef.hpp | Student T process with Jeffreys priors |
| student_t_process_nig.cpp | |
| student_t_process_nig.hpp | Student's t process with Normal-Inverse-Gamma hyperprior on mean and signal variance parameters |
| testfunctions.hpp | |
| ublas_cholesky.hpp | Cholesky decomposition |
| ublas_elementwise.hpp | Elementwise operations for ublas vector/matrix |
| ublas_extra.cpp | |
| ublas_extra.hpp | Extra functions for Ublas library |
| ublas_trace.hpp |