27 #include <boost/bind.hpp> 28 #include <boost/numeric/ublas/matrix_proxy.hpp> 44 BayesOptBase(validSet[0].size(),parameters), mInputSet(validSet)
53 mDims = categories.size();
72 std::vector<double> critv(
mInputSet.size());
74 boost::bind(&DiscreteModel::evaluateCriteria,
this,_1));
76 xOpt =
mInputSet[std::distance(critv.begin(),
77 std::max_element(critv.begin(),critv.end()))];
108 for(
size_t i = 0; i < xPoints.size1(); i++)
110 const vectord xP = perms[i];
DiscreteModel()
Default constructor forbidden.
void findOptimal(vectord &xOpt)
Call the inner optimization method to find the optimal point acording to the criteria.
vectord samplePoint()
Sample a single point in the input space.
Namespace of the library interface.
boost::mt19937 mEngine
Random number generator.
BayesOpt main C++ interface.
size_t mDims
Number of dimensions.
virtual ~DiscreteModel()
Default destructor.
Latin Hypercube Sampling.
void randomPerms(D &arr, randEngine &mtRandom)
Modify an array using ramdom permutations.
Abstract module for Bayesian optimization.
void generateInitialPoints(matrixd &xPoints)
Selects the initial set of points to build the surrogate model.
vectord remapPoint(const vectord &x)
Remap the point x to the original space.
vecOfvec mInputSet
List of input points.
Modules and helper macros for logging.