26 #include <boost/numeric/ublas/assignment.hpp>     30 double testFunction(
unsigned int n, 
const double *x,
    35   for (
unsigned int i = 0; i < n; ++i)
    37       f += (x[i] - .53) * (x[i] - .53);
    53     for (
size_t i = 0; i < Xi.size(); ++i)
    57     return testFunction(Xi.size(),x,NULL,NULL);
    67 int main(
int nargs, 
char *args[])
   100   std::cout << 
"Running C++ interface" << std::endl;
   109   diff = (double)(end-start) / (double)CLOCKS_PER_SEC;
   112   std::cout << 
"Running C inferface" << std::endl;
   115   double low[128], up[128], xmin[128], fmin[128];
   118   for (
int i = 0; i < n; ++i) 
   128   diff2 = (double)(end-start) / (double)CLOCKS_PER_SEC;
   133   std::cout << 
"Final result C++: " << result << std::endl;
   134   std::cout << 
"Elapsed time in C++: " << diff << 
" seconds" << std::endl;
   136   std::cout << 
"Final result C: [" << n <<
"](" << xmin[0];
   137   for (
int i = 1; i < n; ++i )
   139       std::cout << 
"," << xmin[i];      
   141   std::cout << 
")" << std::endl;
   142   std::cout << 
"Elapsed time in C: " << diff2 << 
" seconds" << std::endl;
 KernelParameters kernel
Kernel parameters. 
std::string name
Name of the mean function. 
BAYESOPT_API int bayes_optimization(int nDim, eval_func f, void *f_data, const double *lb, const double *ub, double *x, double *minf, bopt_params parameters)
C wrapper for the Bayesian optimization algorithm. 
vectord coef_std
Basis function coefficients (std) 
MeanParameters mean
Mean (parametric function) parameters. 
vectord hp_mean
Kernel hyperparameters prior (mean, log space) 
learning_type l_type
Type of learning for the kernel params. 
Bayesian optimization for functions in continuous input spaces. 
ContinuousModel()
Default constructor forbidden. 
vectord coef_mean
Basis function coefficients (mean) 
size_t n_init_samples
Number of samples before optimization. 
BayesOpt main C++ interface. 
BayesOpt wrapper for C interface. 
size_t n_iterations
Maximum BayesOpt evaluations (budget) 
void optimize(vectord &bestPoint)
Execute the optimization process of the function defined in evaluateSample. 
double evaluateSample(const vectord &Xi)
Function that defines the actual function to be optimized. 
vectord hp_std
Kernel hyperparameters prior (st dev, log space) 
std::string surr_name
Name of the surrogate function. 
double noise
Variance of observation noise (and nugget) 
std::string name
Name of the kernel function. 
score_type sc_type
Score type for kernel hyperparameters (ML,MAP,etc) 
int random_seed
>=0 -> Fixed seed, <0 -> Time based (variable). 
bool checkReachability(const vectord &query)
This function checks if the query is valid or not. 
size_t n_iter_relearn
Number of samples before relearn kernel.