39 NonParametricProcess::NonParametricProcess(
size_t dim, Parameters parameters,
43 mData(data), dim_(dim), mMean(mean), mSigma(parameters.sigma_s)
46 NonParametricProcess::~NonParametricProcess(){}
59 if (!name.compare(
"sGaussianProcess"))
61 else if(!name.compare(
"sGaussianProcessML"))
63 else if(!name.compare(
"sGaussianProcessNormal"))
65 else if (!name.compare(
"sStudentTProcessJef"))
67 else if (!name.compare(
"sStudentTProcessNIG"))
71 throw std::invalid_argument(
"Surrogate function not supported");
Gaussian process with ML parameters.
static NonParametricProcess * create(size_t dim, Parameters parameters, const Dataset &data, MeanModel &mean, randEngine &eng)
Factory model generator for surrogate models.
Namespace of the library interface.
Student's t process with Normal-Inverse-Gamma hyperprior on mean and signal variance parameters...
Abstract class to implement Bayesian regressors.
Student T process with Jeffreys priors.
Standard zero mean gaussian process with noisy observations.
Gaussian process with normal prior on the parameters.
Student T process with Jeffreys prior.
Gaussian process with ML parameters.
Dataset model to deal with the vector (real) based datasets.
std::string surr_name
Name of the surrogate function.
Abstract module for a Bayesian regressor.
Student's t process with Normal Inverse-Gamma hyperprior on mean and snigal variance parameters...
Standard zero mean gaussian process with noisy observations.
Modules and helper macros for logging.
Gaussian process with normal prior on the parameters.