23 #include "testfunctions.hpp" 26 int main(
int nargs,
char *args[])
30 if(!bayesopt::utils::ParamLoader::load(args[1], par)){
31 std::cout <<
"ERROR: provided file \"" << args[1] <<
"\" does not exist" << std::endl;
36 par = initialize_parameters_to_default();
53 branin.optimize(result);
54 std::cout <<
"Result: " << result <<
"->" 55 << branin.evaluateSample(result) << std::endl;
56 branin.printOptimal();
learning_type l_type
Type of learning for the kernel params.
size_t n_init_samples
Number of samples before optimization.
size_t n_iterations
Maximum BayesOpt evaluations (budget)
int verbose_level
Neg-Error,0-Warning,1-Info,2-Debug -> stdout 3-Error,4-Warning,5-Info,>5-Debug -> logfile...
double noise
Variance of observation noise (and nugget)
score_type sc_type
Score type for kernel hyperparameters (ML,MAP,etc)
Allows to load parameters from file.
int random_seed
>=0 -> Fixed seed, <0 -> Time based (variable).
size_t n_iter_relearn
Number of samples before relearn kernel.