BayesOpt
gaussian_process_hierarchical.hpp
Go to the documentation of this file.
1 
3 /*
4 -------------------------------------------------------------------------
5  This file is part of BayesOpt, an efficient C++ library for
6  Bayesian optimization.
7 
8  Copyright (C) 2011-2015 Ruben Martinez-Cantin <rmcantin@unizar.es>
9 
10  BayesOpt is free software: you can redistribute it and/or modify it
11  under the terms of the GNU Affero General Public License as published by
12  the Free Software Foundation, either version 3 of the License, or
13  (at your option) any later version.
14 
15  BayesOpt is distributed in the hope that it will be useful, but
16  WITHOUT ANY WARRANTY; without even the implied warranty of
17  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18  GNU Affero General Public License for more details.
19 
20  You should have received a copy of the GNU Affero General Public License
21  along with BayesOpt. If not, see <http://www.gnu.org/licenses/>.
22 ------------------------------------------------------------------------
23 */
24 
25 
26 #ifndef __HIERARCHICAL_GAUSSIAN_PROCESS_HPP__
27 #define __HIERARCHICAL_GAUSSIAN_PROCESS_HPP__
28 
30 
31 
32 namespace bayesopt
33 {
34 
42  {
43  public:
44  HierarchicalGaussianProcess(size_t dim, Parameters params, const Dataset& data,
45  MeanModel& mean,randEngine& eng);
46  virtual ~HierarchicalGaussianProcess() {};
47 
48  protected:
55 
56  };
57 
60 } //namespace bayesopt
61 
62 #endif
Namespace of the library interface.
Definition: using.dox:1
Kernel based nonparametric process, conditional on kernel hyperparameters.
Virtual class for hierarchical Gaussian processes.
Empirical Bayesian NonParametric process.
double negativeTotalLogLikelihood()
Computes the negative log likelihood of the data for all the parameters.
Dataset model to deal with the vector (real) based datasets.
Definition: dataset.hpp:40