25 #ifndef __BOPT_PARAMETERS_H__ 26 #define __BOPT_PARAMETERS_H__ 31 #if defined (BAYESOPT_DLL) && (defined(_WIN32) || defined(__WIN32__)) && !defined(__LCC__) 32 #if defined(bayesopt_EXPORTS) 33 #define BAYESOPT_API __declspec(dllexport) 35 #define BAYESOPT_API __declspec(dllimport) 75 double coef_mean[128];
129 double crit_params[128];
136 BAYESOPT_API learning_type str2learn(
const char* name);
137 BAYESOPT_API
const char* learn2str(learning_type name);
139 BAYESOPT_API score_type str2score(
const char* name);
140 BAYESOPT_API
const char* score2str(score_type name);
142 BAYESOPT_API
void set_kernel(
bopt_params* params,
const char* name);
143 BAYESOPT_API
void set_mean(
bopt_params* params,
const char* name);
144 BAYESOPT_API
void set_criteria(
bopt_params* params,
const char* name);
145 BAYESOPT_API
void set_surrogate(
bopt_params* params,
const char* name);
146 BAYESOPT_API
void set_log_file(
bopt_params* params,
const char* name);
147 BAYESOPT_API
void set_load_file(
bopt_params* params,
const char* name);
148 BAYESOPT_API
void set_save_file(
bopt_params* params,
const char* name);
149 BAYESOPT_API
void set_learning(
bopt_params* params,
const char* name);
150 BAYESOPT_API
void set_score(
bopt_params* params,
const char* name);
152 BAYESOPT_API
bopt_params initialize_parameters_to_default(
void);
size_t n_inner_iterations
Maximum inner optimizer evaluations.
double noise
Variance of observation noise (and nugget)
mean_parameters mean
Mean (parametric function) parameters.
size_t force_jump
If >0, and the difference between two consecutive observations is pure noise, for n consecutive steps...
learning_type l_type
Type of learning for the kernel params.
size_t n_iterations
Maximum BayesOpt evaluations (budget)
size_t n_hp
Number of kernel hyperparameters.
int verbose_level
Neg-Error,0-Warning,1-Info,2-Debug -> stdout 3-Error,4-Warning,5-Info,>5-Debug -> logfile...
score_type sc_type
Score type for kernel hyperparameters (ML,MAP,etc)
size_t load_save_flag
1-Load data,2-Save data, 3-Load and save data.
char * load_filename
Init data file path (if applicable)
size_t n_init_samples
Number of samples before optimization.
char * surr_name
Name of the surrogate function.
size_t n_coef
Number of mean funct.
double sigma_s
Signal variance (if known).
kernel_parameters kernel
Kernel parameters.
Configuration parameters.
size_t n_crit_params
Number of criterion hyperparameters.
char * name
Name of the kernel function.
double alpha
Inverse Gamma prior for signal var.
char * crit_name
Name of the criterion.
char * name
Name of the mean function.
char * log_filename
Log file path (if applicable)
double beta
Inverse Gamma prior for signal var.
size_t n_iter_relearn
Number of samples before relearn kernel.
int l_all
Learn all hyperparameters or only kernel.
int random_seed
>=0 -> Fixed seed, <0 -> Time based (variable).
double epsilon
For epsilon-greedy exploration.
size_t init_method
Sampling method for initial set 1-LHS, 2-Sobol (if available), other value-uniformly distributed...
Kernel configuration parameters.
char * save_filename
Sava data file path (if applicable)