23 from bayesoptmodule
import BayesOptContinuous
26 from time
import clock
32 total = total + (value -0.33)*(value-0.33)
38 def evaluateSample(self,Xin):
47 params[
'n_iterations'] = 50
48 params[
'n_init_samples'] = 20
49 params[
'crit_name'] =
"cSum(cEI,cDistance)" 50 params[
'crit_params'] = [1, 0.5]
51 params[
'kernel_name'] =
"kMaternISO3" 52 print(
"Callback implementation")
60 mvalue, x_out, error = bayesopt.optimize(testfunc, n, lb, ub, params)
62 print(
"Result", x_out)
63 print(
"Seconds", clock() - start)
66 print(
"OO implementation")
68 bo_test.parameters = params
69 bo_test.lower_bound = lb
70 bo_test.upper_bound = ub
73 mvalue, x_out, error = bo_test.optimize()
75 print(
"Result", x_out)
76 print(
"Seconds", clock() - start)
79 print(
"Callback discrete implementation")
80 x_set = np.random.rand(100,n)
83 mvalue, x_out, error = bayesopt.optimize_discrete(testfunc, x_set, params)
85 print(
"Result", x_out)
86 print(
"Seconds", clock() - start)
88 value = np.array([testfunc(i)
for i
in x_set])
89 print(
"Optimun", x_set[value.argmin()])
Python Module for BayesOptContinuous.