23 #include "testfunctions.hpp" 27 int main(
int nargs,
char *args[])
39 log.open(
"branin.log");
43 for (
size_t ii = 0; ii < 10; ++ii)
50 branin.initializeOptimization();
54 branin.stepOptimization();
57 result = branin.getFinalResult();
58 log << branin.evaluateSample(result) <<
", ";
61 result = branin.getFinalResult();
62 log << branin.evaluateSample(result) <<
", ";
64 log << static_cast<double>(clock() - start_t) / static_cast<double>(CLOCKS_PER_SEC)
72 log.open(
"camel.log");
76 for (
size_t ii = 0; ii < 10; ++ii)
82 vectord lb(2); lb(0) = -2; lb(1) = -1;
83 vectord ub(2); ub(0) = 2; ub(1) = 1;
85 camel.setBoundingBox(lb,ub);
88 camel.initializeOptimization();
92 camel.stepOptimization();
95 result = camel.getFinalResult();
96 log << camel.evaluateSample(result) <<
", ";
99 result = camel.getFinalResult();
100 log << camel.evaluateSample(result) <<
", ";
102 log << static_cast<double>(clock() - start_t) / static_cast<double>(CLOCKS_PER_SEC)
110 log.open(
"hart.log");
114 for (
size_t ii = 0; ii < 10; ++ii)
121 hart.initializeOptimization();
125 hart.stepOptimization();
128 result = hart.getFinalResult();
129 log << hart.evaluateSample(result) <<
", ";
132 result = hart.getFinalResult();
133 log << hart.evaluateSample(result) <<
", ";
135 log << static_cast<double>(clock() - start_t) / static_cast<double>(CLOCKS_PER_SEC)
151 log.open(
"branin_mcmc.log");
154 for (
size_t ii = 0; ii < 10; ++ii)
161 branin.initializeOptimization();
165 branin.stepOptimization();
168 result = branin.getFinalResult();
169 log << branin.evaluateSample(result) <<
", ";
172 result = branin.getFinalResult();
173 log << branin.evaluateSample(result) <<
", ";
175 log << static_cast<double>(clock() - start_t) / static_cast<double>(CLOCKS_PER_SEC)
183 log.open(
"camel_mcmc.log");
186 for (
size_t ii = 0; ii < 10; ++ii)
192 vectord lb(2); lb(0) = -2; lb(1) = -1;
193 vectord ub(2); ub(0) = 2; ub(1) = 1;
195 camel.setBoundingBox(lb,ub);
198 camel.initializeOptimization();
202 camel.stepOptimization();
205 result = camel.getFinalResult();
206 log << camel.evaluateSample(result) <<
", ";
209 result = camel.getFinalResult();
210 log << camel.evaluateSample(result) <<
", ";
212 log << static_cast<double>(clock() - start_t) / static_cast<double>(CLOCKS_PER_SEC)
220 log.open(
"hart_mcmc.log");
223 for (
size_t ii = 0; ii < 10; ++ii)
230 hart.initializeOptimization();
234 hart.stepOptimization();
237 result = hart.getFinalResult();
238 log << hart.evaluateSample(result) <<
", ";
241 result = hart.getFinalResult();
242 log << hart.evaluateSample(result) <<
", ";
244 log << static_cast<double>(clock() - start_t) / static_cast<double>(CLOCKS_PER_SEC)
learning_type l_type
Type of learning for the kernel params.
size_t n_init_samples
Number of samples before optimization.
size_t n_iterations
Maximum BayesOpt evaluations (budget)
size_t force_jump
If >0, and the difference between two consecutive observations is pure noise, for n consecutive steps...
int verbose_level
Neg-Error,0-Warning,1-Info,2-Debug -> stdout 3-Error,4-Warning,5-Info,>5-Debug -> logfile...
double noise
Variance of observation noise (and nugget)
score_type sc_type
Score type for kernel hyperparameters (ML,MAP,etc)
int random_seed
>=0 -> Fixed seed, <0 -> Time based (variable).
size_t n_iter_relearn
Number of samples before relearn kernel.