26 #ifndef __BAYESIANREGRESSOR_HPP__ 27 #define __BAYESIANREGRESSOR_HPP__ 91 double getValueAtMinimum();
93 double getSignalVariance();
95 virtual size_t nHyperParameters() = 0;
96 virtual vectord getHyperParameters() = 0;
97 virtual void setHyperParameters(
const vectord& theta) = 0;
110 inline double NonParametricProcess::getValueAtMinimum()
111 {
return mData.getValueAtMinimum(); };
114 inline const Dataset* NonParametricProcess::getData()
117 inline double NonParametricProcess::getSignalVariance()
virtual void updateSurrogateModel()=0
Sequential update of the surrogate model by adding a new row to the Kernel matrix, more precisely, to its Cholesky decomposition.
static NonParametricProcess * create(size_t dim, Parameters parameters, const Dataset &data, MeanModel &mean, randEngine &eng)
Factory model generator for surrogate models.
Namespace of the library interface.
Abstract class to implement Bayesian regressors.
Interface for probability models.
Abstract class for optimizable objects.
Dataset model to deal with the vector (real) based datasets.
double mSigma
Signal variance.
virtual ProbabilityDistribution * prediction(const vectord &query)=0
Function that returns the prediction of the GP for a query point in the hypercube [0...
virtual void fitSurrogateModel()=0
Computes the initial surrogate model and updates the kernel parameters estimation.
Mean (parametric) functions.