25 #ifndef __BOPT_PARAMETERS_HPP__ 26 #define __BOPT_PARAMETERS_HPP__ 29 #include <boost/numeric/ublas/vector.hpp> 33 typedef boost::numeric::ublas::vector<double> vectord;
125 void set_learning(std::string
name);
127 std::string get_learning();
130 void set_score(std::string
name);
132 std::string get_score();
138 void bostrdup (
char* d,
const char *s);
double epsilon
For epsilon-greedy exploration.
KernelParameters kernel
Kernel parameters.
bool l_all
Learn all hyperparameters or only kernel.
size_t load_save_flag
1-Load data,2-Save data, 3-Load and save data.
std::string name
Name of the mean function.
vectord coef_std
Basis function coefficients (std)
MeanParameters mean
Mean (parametric function) parameters.
double sigma_s
Signal variance (if known).
vectord hp_mean
Kernel hyperparameters prior (mean, log space)
Namespace of the library interface.
learning_type l_type
Type of learning for the kernel params.
std::string load_filename
Init data file path (if applicable)
vectord coef_mean
Basis function coefficients (mean)
size_t n_init_samples
Number of samples before optimization.
vectord crit_params
Criterion hyperparameters (if needed)
size_t n_inner_iterations
Maximum inner optimizer evaluations.
double beta
Inverse Gamma prior for signal var.
size_t n_iterations
Maximum BayesOpt evaluations (budget)
size_t force_jump
If >0, and the difference between two consecutive observations is pure noise, for n consecutive steps...
Configuration parameters.
vectord hp_std
Kernel hyperparameters prior (st dev, log space)
std::string surr_name
Name of the surrogate function.
std::string log_filename
Log file path (if applicable)
double alpha
Inverse Gamma prior for signal var.
std::string crit_name
Name of the criterion.
int verbose_level
Neg-Error,0-Warning,1-Info,2-Debug -> stdout 3-Error,4-Warning,5-Info,>5-Debug -> logfile...
size_t init_method
Sampling method for initial set 1-LHS, 2-Sobol (if available), other value-uniformly distributed...
double noise
Variance of observation noise (and nugget)
std::string name
Name of the kernel function.
score_type sc_type
Score type for kernel hyperparameters (ML,MAP,etc)
std::string save_filename
Sava data file path (if applicable)
int random_seed
>=0 -> Fixed seed, <0 -> Time based (variable).
size_t n_iter_relearn
Number of samples before relearn kernel.