27 #include <boost/lexical_cast.hpp>    37   KernelRegressor::KernelRegressor(
size_t dim, Parameters parameters,
    39                    MeanModel& mean, randEngine& eng):
    40     NonParametricProcess(dim,parameters,data,mean,eng), 
    41     mRegularizer(parameters.noise),
    42     mKernel(dim, parameters),
    43     mScoreType(parameters.sc_type),
    44     mLearnType(parameters.l_type),
    45     mLearnAll(parameters.l_all)
    48   KernelRegressor::~KernelRegressor(){}
    54     const vectord lastX = mData.getLastSampleX();
    55     vectord newK = computeCrossCorrelation(lastX);
    56     newK(newK.size()-1) += mRegularizer;   
    58     precomputePrediction(); 
    64     size_t nSamples = mData.getNSamples();
    65     mL.resize(nSamples,nSamples);
    68     matrixd K(nSamples,nSamples);
    73     throw std::runtime_error(
"Cholesky decomposition error at line " + 
    74                  boost::lexical_cast<std::string>(line_error));
    80     const size_t nSamples = mData.getNSamples();
    81     matrixd corrMatrix(nSamples,nSamples);
    82     mKernel.computeDerivativeCorrMatrix(mData.mX,corrMatrix,dth_index);
 matrixd computeDerivativeCorrMatrix(int dth_index)
Computes the derivative of the correlation matrix with respect to the dth hyperparameter. 
void cholesky_add_row(TRIA &L, const VECTOR &v)
decompose the symmetric positive definit matrix A into product L L^T. 
void computeCholeskyCorrelation()
Computes the Cholesky decomposition of the Correlation matrix. 
void updateSurrogateModel()
Sequential update of the surrogate model by adding a new row to the Kernel matrix, more precisely, to its Cholesky decomposition. 
Namespace of the library interface. 
size_t cholesky_decompose(const MATRIX &A, TRIA &L)
decompose the symmetric positive definit matrix A into product L L^T. 
Modules and helper macros for logging. 
Nonparametric process abstract module.