BayesOpt
NonParametricProcesses

Set of nonparametric processes (Gaussian process, Student's t process, etc.) for surrogate modelling. More...

Classes

class  bayesopt::ConditionalBayesProcess
 Empirical Bayesian NonParametric process. More...
 
class  bayesopt::Dataset
 Dataset model to deal with the vector (real) based datasets. More...
 
class  bayesopt::GaussianProcess
 Standard zero mean gaussian process with noisy observations. More...
 
class  bayesopt::HierarchicalGaussianProcess
 Virtual class for hierarchical Gaussian processes. More...
 
class  bayesopt::GaussianProcessML
 Gaussian process with ML parameters. More...
 
class  bayesopt::GaussianProcessNormal
 Gaussian process with normal prior on the parameters. More...
 
class  bayesopt::KernelRegressor
 Abstract class to implement non-parametric processes. More...
 
class  bayesopt::NonParametricProcess
 Abstract class to implement Bayesian regressors. More...
 
class  bayesopt::StudentTProcessJeffreys
 Student T process with Jeffreys prior. More...
 
class  bayesopt::StudentTProcessNIG
 Student's t process with Normal Inverse-Gamma hyperprior on mean and snigal variance parameters. More...
 

Functions

double bayesopt::ConditionalBayesProcess::evaluate (const vectord &x)
 Computes the score (eg:likelihood) of the kernel parameters. More...
 
void bayesopt::Dataset::addSample (const vectord &x, double y)
 
double bayesopt::Dataset::getSampleY (size_t index) const
 
vectord bayesopt::Dataset::getSampleX (size_t index) const
 
double bayesopt::Dataset::getLastSampleY () const
 
vectord bayesopt::Dataset::getLastSampleX () const
 
vectord bayesopt::Dataset::getPointAtMinimum () const
 
double bayesopt::Dataset::getValueAtMinimum () const
 
size_t bayesopt::Dataset::getNSamples () const
 
void bayesopt::Dataset::updateMinMax (size_t i)
 
void bayesopt::KernelRegressor::fitSurrogateModel ()
 Computes the initial surrogate model and updates the kernel parameters estimation. More...
 
size_t bayesopt::KernelRegressor::nHyperParameters ()
 
vectord bayesopt::KernelRegressor::getHyperParameters ()
 
void bayesopt::KernelRegressor::setHyperParameters (const vectord &theta)
 
void bayesopt::KernelRegressor::computeCorrMatrix (matrixd &corrMatrix)
 Computes the Correlation (Kernel or Gram) matrix.
 
matrixd bayesopt::KernelRegressor::computeCorrMatrix ()
 Computes the Correlation (Kernel or Gram) matrix.
 
vectord bayesopt::KernelRegressor::computeCrossCorrelation (const vectord &query)
 
double bayesopt::KernelRegressor::computeSelfCorrelation (const vectord &query)
 
void bayesopt::KernelRegressor::addNewPointToCholesky (const vectord &correlation, double selfcorrelation)
 Adds a new point to the Cholesky decomposition of the Correlation matrix. More...
 
double bayesopt::NonParametricProcess::getValueAtMinimum ()
 
const Datasetbayesopt::NonParametricProcess::getData ()
 
double bayesopt::NonParametricProcess::getSignalVariance ()
 

Detailed Description

Set of nonparametric processes (Gaussian process, Student's t process, etc.) for surrogate modelling.

Function Documentation

◆ addNewPointToCholesky()

void bayesopt::KernelRegressor::addNewPointToCholesky ( const vectord &  correlation,
double  selfcorrelation 
)
inlineprivate

Adds a new point to the Cholesky decomposition of the Correlation matrix.

Definition at line 206 of file kernelregressor.hpp.

References bayesopt::utils::cholesky_add_row(), and bayesopt::KernelRegressor::mL.

◆ evaluate()

double bayesopt::ConditionalBayesProcess::evaluate ( const vectord &  x)
inlinevirtual

Computes the score (eg:likelihood) of the kernel parameters.

Warning: To evaluate the score, it is necessary to change the parameters

Parameters
xset of parameters.
Returns
score

Implements bayesopt::RBOptimizable.

Definition at line 105 of file conditionalbayesprocess.hpp.

References bayesopt::ConditionalBayesProcess::evaluateKernelParams().

◆ fitSurrogateModel()

void bayesopt::KernelRegressor::fitSurrogateModel ( )
inlinevirtual

Computes the initial surrogate model and updates the kernel parameters estimation.

This function requires to recompute the full Kernel matrix (and its decomposition). Use it with precaution.

Implements bayesopt::NonParametricProcess.

Definition at line 121 of file kernelregressor.hpp.

References bayesopt::KernelRegressor::computeCholeskyCorrelation(), bayesopt::NonParametricProcess::mSigma, and bayesopt::KernelRegressor::precomputePrediction().