BayesOpt
|
Set of nonparametric processes (Gaussian process, Student's t process, etc.) for surrogate modelling. More...
Classes | |
class | bayesopt::ConditionalBayesProcess |
Empirical Bayesian NonParametric process. More... | |
class | bayesopt::Dataset |
Dataset model to deal with the vector (real) based datasets. More... | |
class | bayesopt::GaussianProcess |
Standard zero mean gaussian process with noisy observations. More... | |
class | bayesopt::HierarchicalGaussianProcess |
Virtual class for hierarchical Gaussian processes. More... | |
class | bayesopt::GaussianProcessML |
Gaussian process with ML parameters. More... | |
class | bayesopt::GaussianProcessNormal |
Gaussian process with normal prior on the parameters. More... | |
class | bayesopt::KernelRegressor |
Abstract class to implement non-parametric processes. More... | |
class | bayesopt::NonParametricProcess |
Abstract class to implement Bayesian regressors. More... | |
class | bayesopt::StudentTProcessJeffreys |
Student T process with Jeffreys prior. More... | |
class | bayesopt::StudentTProcessNIG |
Student's t process with Normal Inverse-Gamma hyperprior on mean and snigal variance parameters. More... | |
Functions | |
double | bayesopt::ConditionalBayesProcess::evaluate (const vectord &x) |
Computes the score (eg:likelihood) of the kernel parameters. More... | |
void | bayesopt::Dataset::addSample (const vectord &x, double y) |
double | bayesopt::Dataset::getSampleY (size_t index) const |
vectord | bayesopt::Dataset::getSampleX (size_t index) const |
double | bayesopt::Dataset::getLastSampleY () const |
vectord | bayesopt::Dataset::getLastSampleX () const |
vectord | bayesopt::Dataset::getPointAtMinimum () const |
double | bayesopt::Dataset::getValueAtMinimum () const |
size_t | bayesopt::Dataset::getNSamples () const |
void | bayesopt::Dataset::updateMinMax (size_t i) |
void | bayesopt::KernelRegressor::fitSurrogateModel () |
Computes the initial surrogate model and updates the kernel parameters estimation. More... | |
size_t | bayesopt::KernelRegressor::nHyperParameters () |
vectord | bayesopt::KernelRegressor::getHyperParameters () |
void | bayesopt::KernelRegressor::setHyperParameters (const vectord &theta) |
void | bayesopt::KernelRegressor::computeCorrMatrix (matrixd &corrMatrix) |
Computes the Correlation (Kernel or Gram) matrix. | |
matrixd | bayesopt::KernelRegressor::computeCorrMatrix () |
Computes the Correlation (Kernel or Gram) matrix. | |
vectord | bayesopt::KernelRegressor::computeCrossCorrelation (const vectord &query) |
double | bayesopt::KernelRegressor::computeSelfCorrelation (const vectord &query) |
void | bayesopt::KernelRegressor::addNewPointToCholesky (const vectord &correlation, double selfcorrelation) |
Adds a new point to the Cholesky decomposition of the Correlation matrix. More... | |
double | bayesopt::NonParametricProcess::getValueAtMinimum () |
const Dataset * | bayesopt::NonParametricProcess::getData () |
double | bayesopt::NonParametricProcess::getSignalVariance () |
Set of nonparametric processes (Gaussian process, Student's t process, etc.) for surrogate modelling.
|
inlineprivate |
Adds a new point to the Cholesky decomposition of the Correlation matrix.
Definition at line 206 of file kernelregressor.hpp.
References bayesopt::utils::cholesky_add_row(), and bayesopt::KernelRegressor::mL.
|
inlinevirtual |
Computes the score (eg:likelihood) of the kernel parameters.
Warning: To evaluate the score, it is necessary to change the parameters
x | set of parameters. |
Implements bayesopt::RBOptimizable.
Definition at line 105 of file conditionalbayesprocess.hpp.
References bayesopt::ConditionalBayesProcess::evaluateKernelParams().
|
inlinevirtual |
Computes the initial surrogate model and updates the kernel parameters estimation.
This function requires to recompute the full Kernel matrix (and its decomposition). Use it with precaution.
Implements bayesopt::NonParametricProcess.
Definition at line 121 of file kernelregressor.hpp.
References bayesopt::KernelRegressor::computeCholeskyCorrelation(), bayesopt::NonParametricProcess::mSigma, and bayesopt::KernelRegressor::precomputePrediction().