|
BayesOpt
|
Main module for Bayesian optimization. More...
Classes | |
| class | bayesopt::ContinuousModel |
| Bayesian optimization for functions in continuous input spaces. More... | |
| class | bayesopt::DiscreteModel |
| Bayesian optimization for functions in discrete spaces. More... | |
| class | bayesopt::BayesOptBase |
| Abstract module for Bayesian optimization. More... | |
| class | bayesopt::EmpiricalBayes |
| Bayesian optimization using different non-parametric processes as distributions over surrogate functions. More... | |
| class | bayesopt::PosteriorFixed |
| Bayesian optimization using different non-parametric processes as distributions over surrogate functions. More... | |
| class | bayesopt::PosteriorModel |
| Bayesian optimization using different non-parametric processes as distributions over surrogate functions. More... | |
Typedefs | |
| typedef double(* | eval_func) (unsigned int n, const double *x, double *gradient, void *func_data) |
Functions | |
| BAYESOPT_API int | bayes_optimization (int nDim, eval_func f, void *f_data, const double *lb, const double *ub, double *x, double *minf, bopt_params parameters) |
| C wrapper for the Bayesian optimization algorithm. More... | |
| BAYESOPT_API int | bayes_optimization_disc (int nDim, eval_func f, void *f_data, double *valid_x, size_t n_points, double *x, double *minf, bopt_params parameters) |
| C wrapper for the Bayesian optimization algorithm. More... | |
| BAYESOPT_API int | bayes_optimization_categorical (int nDim, eval_func f, void *f_data, int *categories, double *x, double *minf, bopt_params parameters) |
| C wrapper for the Bayesian optimization algorithm. More... | |
| static PosteriorModel * | bayesopt::PosteriorModel::create (size_t dim, Parameters params, randEngine &eng) |
| bayesopt::PosteriorModel::PosteriorModel (size_t dim, Parameters params, randEngine &eng) | |
| Constructor. More... | |
| virtual | bayesopt::PosteriorModel::~PosteriorModel () |
| Default destructor. | |
| virtual void | bayesopt::PosteriorModel::updateHyperParameters ()=0 |
| virtual void | bayesopt::PosteriorModel::fitSurrogateModel ()=0 |
| virtual void | bayesopt::PosteriorModel::updateSurrogateModel ()=0 |
| virtual double | bayesopt::PosteriorModel::evaluateCriteria (const vectord &query)=0 |
| virtual void | bayesopt::PosteriorModel::updateCriteria (const vectord &query)=0 |
| virtual bool | bayesopt::PosteriorModel::criteriaRequiresComparison ()=0 |
| virtual void | bayesopt::PosteriorModel::setFirstCriterium ()=0 |
| virtual bool | bayesopt::PosteriorModel::setNextCriterium (const vectord &prevResult)=0 |
| virtual std::string | bayesopt::PosteriorModel::getBestCriteria (vectord &best)=0 |
| void | bayesopt::PosteriorModel::setSamples (const matrixd &x, const vectord &y) |
| void | bayesopt::PosteriorModel::setSamples (const matrixd &x) |
| void | bayesopt::PosteriorModel::setSamples (const vectord &y) |
| void | bayesopt::PosteriorModel::setSample (const vectord &x, double y) |
| void | bayesopt::PosteriorModel::addSample (const vectord &x, double y) |
| double | bayesopt::PosteriorModel::getValueAtMinimum () |
| vectord | bayesopt::PosteriorModel::getPointAtMinimum () |
| void | bayesopt::PosteriorModel::plotDataset (TLogLevel level) |
| const Dataset * | bayesopt::PosteriorModel::getData () |
| virtual ProbabilityDistribution * | bayesopt::PosteriorModel::getPrediction (const vectord &query)=0 |
Variables | |
| Parameters | bayesopt::PosteriorModel::mParameters |
| Configuration parameters. | |
| size_t | bayesopt::PosteriorModel::mDims |
| Number of dimensions. | |
| Dataset | bayesopt::PosteriorModel::mData |
| Dataset (x-> inputs, y-> labels/output) | |
| MeanModel | bayesopt::PosteriorModel::mMean |
Main module for Bayesian optimization.
| BAYESOPT_API int bayes_optimization | ( | int | nDim, |
| eval_func | f, | ||
| void * | f_data, | ||
| const double * | lb, | ||
| const double * | ub, | ||
| double * | x, | ||
| double * | minf, | ||
| bopt_params | parameters | ||
| ) |
C wrapper for the Bayesian optimization algorithm.
This function assumes continuous optimization.
| nDim | number of input dimensions |
| f | pointer to the function to optimize |
| f_data | pointer to extra data to be used by f |
| lb | array of lower bounds |
| ub | array of upper bounds |
| x | input: initial query, output: result (minimum) |
| minf | value of the function at the minimum |
| parameters | parameters for the Bayesian optimization. |
Definition at line 98 of file bayesoptwpr.cpp.
| BAYESOPT_API int bayes_optimization_categorical | ( | int | nDim, |
| eval_func | f, | ||
| void * | f_data, | ||
| int * | categories, | ||
| double * | x, | ||
| double * | minf, | ||
| bopt_params | parameters | ||
| ) |
C wrapper for the Bayesian optimization algorithm.
This assumes the input variables are categories. Use of the Hamming kernel is highly recommended.
| nDim | number of input dimensions |
| f | pointer to the function to optimize |
| f_data | pointer to extra data to be used by f |
| categories | number of categories on each dimension |
| x | input: initial query, output: result (minimum) |
| minf | value of the function at the minimum |
| parameters | parameters for the Bayesian optimization. |
Definition at line 203 of file bayesoptwpr.cpp.
| BAYESOPT_API int bayes_optimization_disc | ( | int | nDim, |
| eval_func | f, | ||
| void * | f_data, | ||
| double * | valid_x, | ||
| size_t | n_points, | ||
| double * | x, | ||
| double * | minf, | ||
| bopt_params | parameters | ||
| ) |
C wrapper for the Bayesian optimization algorithm.
This function assumes discrete optimization.
| nDim | number of input dimensions |
| f | pointer to the function to optimize |
| f_data | pointer to extra data to be used by f |
| valid_x | set of possible discrete points |
| n_points | number of possible discrete points |
| x | input: initial query, output: result (minimum) |
| minf | value of the function at the minimum |
| parameters | parameters for the Bayesian optimization. |
Definition at line 143 of file bayesoptwpr.cpp.
Referenced by ExampleDisc::checkReachability().
| bayesopt::PosteriorModel::PosteriorModel | ( | size_t | dim, |
| Parameters | params, | ||
| randEngine & | eng | ||
| ) |
Constructor.
| params | set of parameters (see parameters.hpp) |
Definition at line 46 of file posteriormodel.cpp.