BayesOpt
include Directory Reference
+ Directory dependency graph for include:

Directories

Files

file  bopt_state.hpp [code]
 Representation of a optimization state.
 
file  conditionalbayesprocess.hpp [code]
 Kernel based nonparametric process, conditional on kernel hyperparameters.
 
file  criteria_functors.hpp [code]
 Abstract and factory modules for criteria.
 
file  dataset.hpp [code]
 Dataset model.
 
file  gauss_distribution.hpp [code]
 Gaussian probability distribution.
 
file  gaussian_process.hpp [code]
 Standard zero mean gaussian process with noisy observations.
 
file  gaussian_process_hierarchical.hpp [code]
 Hierarchical model for Gaussian process.
 
file  gaussian_process_ml.hpp [code]
 Gaussian process with ML parameters.
 
file  gaussian_process_normal.hpp [code]
 Gaussian process with normal prior on the parameters.
 
file  inneroptimization.hpp [code]
 C++ wrapper of the NLOPT library.
 
file  kernel_functors.hpp [code]
 Kernel (covariance) functions.
 
file  kernelregressor.hpp [code]
 Nonparametric process abstract module.
 
file  mcmc_sampler.hpp [code]
 Markov Chain Monte Carlo algorithms.
 
file  mean_atomic.hpp [code]
 Atomic (simple) parametric functions.
 
file  mean_combined.hpp [code]
 Parametric functions that combine other functions.
 
file  mean_functors.hpp [code]
 Mean (parametric) functions.
 
file  nonparametricprocess.hpp [code]
 Abstract module for a Bayesian regressor.
 
file  optimizable.hpp [code]
 Abstract class for optimizable objects.
 
file  posterior_fixed.hpp [code]
 Posterior model based on fixed kernel parameters.
 
file  posterior_mcmc.hpp [code]
 Posterior distribution on GPs based on MCMC over kernel parameters.
 
file  posteriormodel.hpp [code]
 Abstract interface for posterior model/criteria.
 
file  prob_distribution.hpp [code]
 Interface for probability models.
 
file  randgen.hpp [code]
 Boost types for random number generation.
 
file  specialtypes.hpp [code]
 Boost vector and matrix types.
 
file  student_t_distribution.hpp [code]
 Student's t probability distribution.
 
file  student_t_process_jef.hpp [code]
 Student T process with Jeffreys priors.
 
file  student_t_process_nig.hpp [code]
 Student's t process with Normal-Inverse-Gamma hyperprior on mean and signal variance parameters.