addNewPointToCholesky(const vectord &correlation, double selfcorrelation) | bayesopt::KernelRegressor | inlineprivate |
computeCholeskyCorrelation() | bayesopt::KernelRegressor | protected |
computeCorrMatrix(matrixd &corrMatrix) | bayesopt::KernelRegressor | inlineprotected |
computeCorrMatrix() | bayesopt::KernelRegressor | inlineprotected |
computeCrossCorrelation(const vectord &query) (defined in bayesopt::KernelRegressor) | bayesopt::KernelRegressor | inlineprotected |
computeDerivativeCorrMatrix(int dth_index) | bayesopt::KernelRegressor | protected |
computeSelfCorrelation(const vectord &query) (defined in bayesopt::KernelRegressor) | bayesopt::KernelRegressor | inlineprotected |
create(size_t dim, Parameters parameters, const Dataset &data, MeanModel &mean, randEngine &eng) | bayesopt::NonParametricProcess | static |
dim_ (defined in bayesopt::NonParametricProcess) | bayesopt::NonParametricProcess | protected |
evaluate(const vectord &query)=0 (defined in bayesopt::RBOptimizable) | bayesopt::RBOptimizable | pure virtual |
fitSurrogateModel() | bayesopt::KernelRegressor | inlinevirtual |
getData() (defined in bayesopt::NonParametricProcess) | bayesopt::NonParametricProcess | inline |
getHyperParameters() (defined in bayesopt::KernelRegressor) | bayesopt::KernelRegressor | inlinevirtual |
getSignalVariance() (defined in bayesopt::KernelRegressor) | bayesopt::KernelRegressor | |
getValueAtMinimum() (defined in bayesopt::NonParametricProcess) | bayesopt::NonParametricProcess | inline |
KernelRegressor(size_t dim, Parameters parameters, const Dataset &data, MeanModel &mean, randEngine &eng) (defined in bayesopt::KernelRegressor) | bayesopt::KernelRegressor | |
mData (defined in bayesopt::NonParametricProcess) | bayesopt::NonParametricProcess | protected |
mKernel (defined in bayesopt::KernelRegressor) | bayesopt::KernelRegressor | protected |
mL | bayesopt::KernelRegressor | protected |
mLearnAll (defined in bayesopt::KernelRegressor) | bayesopt::KernelRegressor | protected |
mLearnType (defined in bayesopt::KernelRegressor) | bayesopt::KernelRegressor | protected |
mMean (defined in bayesopt::NonParametricProcess) | bayesopt::NonParametricProcess | protected |
mRegularizer | bayesopt::KernelRegressor | private |
mScoreType (defined in bayesopt::KernelRegressor) | bayesopt::KernelRegressor | protected |
mSigma | bayesopt::NonParametricProcess | protected |
nHyperParameters() (defined in bayesopt::KernelRegressor) | bayesopt::KernelRegressor | inlinevirtual |
NonParametricProcess(size_t dim, Parameters parameters, const Dataset &data, MeanModel &mean, randEngine &eng) (defined in bayesopt::NonParametricProcess) | bayesopt::NonParametricProcess | |
precomputePrediction()=0 | bayesopt::KernelRegressor | protectedpure virtual |
prediction(const vectord &query)=0 | bayesopt::NonParametricProcess | pure virtual |
RBOptimizable() (defined in bayesopt::RBOptimizable) | bayesopt::RBOptimizable | inline |
setHyperParameters(const vectord &theta) (defined in bayesopt::KernelRegressor) | bayesopt::KernelRegressor | inlinevirtual |
updateSurrogateModel() | bayesopt::KernelRegressor | virtual |
~KernelRegressor() (defined in bayesopt::KernelRegressor) | bayesopt::KernelRegressor | virtual |
~NonParametricProcess() (defined in bayesopt::NonParametricProcess) | bayesopt::NonParametricProcess | virtual |
~RBOptimizable() (defined in bayesopt::RBOptimizable) | bayesopt::RBOptimizable | inlinevirtual |