|
BayesOpt
|
Set of parametric models for surrogate modelling. More...
Classes | |
| class | bayesopt::AtomicFunction |
| Abstract class for an atomic kernel. More... | |
| class | bayesopt::ZeroFunction |
| Constant zero function. More... | |
| class | bayesopt::OneFunction |
| Constant one function. More... | |
| class | bayesopt::ConstantFunction |
| Constant function. More... | |
| class | bayesopt::LinearFunction |
| Linear combination function. More... | |
| class | bayesopt::LinearPlusConstantFunction |
| Linear combination plus constant function. More... | |
| class | bayesopt::CombinedFunction |
| Abstract class for combined functions. More... | |
| class | bayesopt::SumFunction |
| Sum of two kernels. More... | |
| class | bayesopt::ParametricFunction |
| Interface for mean functors. More... | |
| class | bayesopt::MeanFactory |
| Factory model for parametric functions This factory is based on the libgp library by Manuel Blum https://bitbucket.org/mblum/libgp which follows the squeme of GPML by Rasmussen and Nickisch http://www.gaussianprocess.org/gpml/code/matlab/doc/. More... | |
| class | bayesopt::MeanModel |
Functions | |
| template<typename MeanType > | |
| ParametricFunction * | bayesopt::create_func () |
| ParametricFunction * | bayesopt::MeanModel::getMeanFunc () |
| void | bayesopt::MeanModel::setParameters (const vectord &theta) |
| vectord | bayesopt::MeanModel::getParameters () |
| size_t | bayesopt::MeanModel::nParameters () |
| vectord | bayesopt::MeanModel::getFeatures (const vectord &x) |
| void | bayesopt::MeanModel::getFeatures (const vectord &x, vectord &kx) |
| size_t | bayesopt::MeanModel::nFeatures () |
| void | bayesopt::MeanModel::setPoints (const vecOfvec &x) |
| void | bayesopt::MeanModel::addNewPoint (const vectord &x) |
| vectord | bayesopt::MeanModel::muTimesFeat () |
| double | bayesopt::MeanModel::muTimesFeat (const vectord &x) |
Set of parametric models for surrogate modelling.